6.已知函數(shù)f(x)=exsinx,其中x∈R,e=2.71828…為自然對數(shù)的底數(shù).當(dāng)x∈(0,$\frac{π}{2}$]時,直線y=kx在函數(shù)y=f(x)的圖象的下方,則實數(shù)k的取值范圍(-∞,1].

分析 令g(x)=f(x)-kx=exsinx-kx,即g(x)≥0恒成立,通過討論k的范圍確定函數(shù)的單調(diào)性,從而求出k的范圍即可.

解答 解:令g(x)=f(x)-kx=exsinx-kx,即g(x)≥0恒成立,
而g′(x)=ex(sinx+cosx)-k,
令h(x)=ex(sinx+cosx)⇒h′(x)=ex(sinx+cosx)+ex(cosx-sinx)=2excosx,
∵x∈(0,$\frac{π}{2}$],∴h′(x)≥0,
∴h(x)在(0,$\frac{π}{2}$]上單調(diào)遞增,∴1≤h(x)≤${e}^{\frac{π}{2}}$,
當(dāng)k≤1時,g′(x)≥0,g(x)在(0,$\frac{π}{2}$]上單調(diào)遞增,g(x)≥g(0)=0,符合題意;
當(dāng)k≥${e}^{\frac{π}{2}}$時,g′(x)≤0⇒g(x)在(0,$\frac{π}{2}$]上單調(diào)遞減,g(x)≤g(0)=0,與題意不合;            
當(dāng)1<k<${e}^{\frac{π}{2}}$時,g′(x)為一個單調(diào)遞增的函數(shù),而g′(0)=1-k<0,g′( $\frac{π}{2}$)=${e}^{\frac{π}{2}}$-k>0
由零點存在性定理,必存在一個零點x0,使得g′(x0)=0,
當(dāng)x∈[0,x0)時,g′(x)≤0,從而g(x)在x∈[0,x0)上單調(diào)遞減,
從而g(x)≤g(0)=0,與題意不合,
綜上所述:k的取值范圍為(-∞,1].
故答案為:(-∞,1].

點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列說法正確的是(  )
A.命題“若sinx=siny,則x=y”的逆否命題為真命題
B.“x=-1”是“x2-5x-6=0“的必要不充分條件
C.命題“?x∈R,x2-5x-6=0”的否定是“?x∈R,x2-5x-6=0”
D.命題“若x2=1,則x=1”的否命題為“若x2≠1,則x≠1”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{5}}{3}$,短軸長為4,過點P(0,3)引直線l順次與橢圓交于點A、B(A在B、P之間).
(I)求橢圓方程;
(Ⅱ)O為坐標(biāo)原點,求三角形AOB的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=exsinx,其中x∈R,e=2.71828…為自然對數(shù)的底數(shù),當(dāng)x∈[0,$\frac{π}{2}$]時,函數(shù)y=f(x)的圖象不在直線y=kx的下方,則實數(shù)k的取值范圍( 。
A.(-∞,1)B.(-∞,1]C.(-∞,e${\;}^{\frac{π}{2}}$)D.(-∞,e${\;}^{\frac{π}{2}}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=lnx-$\frac{a}{x}$.
(1)若f(x)在區(qū)間[1,e2]上有最小值2,求a的值(e≈2.718);
(2)在(1)的條件下,?x1x2∈[1,e2]都有|f(x1)-f(x2)|<et-2,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=a$\sqrt{x}$+b(lnx+1)+1的圖象在x=1處的切線方程為x+2y-3=0.
(Ⅰ)求a,b的值;
(Ⅱ)證明:當(dāng)x>0時,恒有$\sqrt{x}$>lnx;
(Ⅲ)證明:對于任意給定的正數(shù)M,總存在正實數(shù)x0,使得當(dāng)x>x0時,恒有$\sqrt{x}$>Mlnx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=lnx,g(x)=f[tx-(t-1)m]-tf(x),(其中m,t為常數(shù)且0<t<1,m>0).
(Ⅰ)求g(x)的極值;
(Ⅱ)?n>0,是否存在x0>0,使得|$\frac{{f({x_0}+1)}}{x_0}-1}$|<n成立,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=lnx+$\frac{1}{2}$mx2-2(m∈R).
(1)曲線y=f(x)在(1,f(1))處的切線與直線2x-y+3=0垂直,求m的值;
(2)若關(guān)于x的不等式f(x)+2≤mx2+(m-1)x-1恒成立,求整數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.三個數(shù)0.76,60.7,log76的大小關(guān)系為( 。
A.0.76<log76<60.7B.0.76<60.7<log76C.log76<60.7<0.76D.log76<0.76<60.7

查看答案和解析>>

同步練習(xí)冊答案