10.函數(shù)f(x)的定義域?yàn)镽,若f(x+1)與f(x-1)都是奇函數(shù),則f(5)=( 。
A.-1B.0C.1D.5

分析 可知f(x+1)是R上的奇函數(shù),從而得出f(1)=0,進(jìn)而得出f(-3)=0,從而可得出f(5)=-f(-3)=0.

解答 解:根據(jù)條件,f(x+1)與f(x-1)都是R上的奇函數(shù);
∴f(0+1)=0;
即f(1)=0;
x=-2時(shí),f(-2-1)=-f(2-1);
即f(-3)=-f(1)=0;
∴f(5)=f(4+1)=-f(-4+1)=-f(-3)=0.
故選B.

點(diǎn)評(píng) 考查奇函數(shù)的定義,奇函數(shù)在原點(diǎn)有定義時(shí),原點(diǎn)處的函數(shù)值為0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}x≥0\\ y≥0\\ 2x+y≤2\end{array}\right.$,目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為M,若M的取值范圍是[1,2],則點(diǎn)M(a,b)所經(jīng)過的區(qū)域面積為( 。
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知在△ABC中,角A、B、C的對(duì)邊分別為a,b,c,且cosC=-$\frac{1}{4}$,c=4,$\frac{sinA}{sinB}$=$\frac{2}{3}$
(I)求a,b的值以及△ABC的面積;
(Ⅱ)記AD為A的角平分線且交BC 于D,求AD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若C=2A,c=$\sqrt{3}$a,則$\frac{a}$等于( 。
A.1B.2C.$\sqrt{2}$D.1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.為了政府對(duì)過熱的房地產(chǎn)市場進(jìn)行調(diào)控決策,統(tǒng)計(jì)部門對(duì)城市人和農(nóng)村人進(jìn)行了買房的心理預(yù)期調(diào)研,用簡單隨機(jī)抽樣的方法抽取110人進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表:
買房不買房糾結(jié)
城市人515
農(nóng)村人2010
已知樣本中城市人數(shù)與農(nóng)村人數(shù)之比是3:8.
(1)分別求樣本中城市人中的不買房人數(shù)和農(nóng)村人中的糾結(jié)人數(shù);
(2)用獨(dú)立性檢驗(yàn)的思想方法說明在這三種買房的心理預(yù)期中哪一種與城鄉(xiāng)有關(guān)?
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(b+d)}$.
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.89710.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知cos($\frac{π}{2}$+α)=-$\frac{2\sqrt{2}}{3}$,α∈($\frac{π}{2}$,$\frac{3π}{2}$),則sinα•cosα+cos2α=$\frac{-2\sqrt{2}-7}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.復(fù)數(shù)z滿足$({1-\sqrt{3}i})z=i$(S為虛數(shù)單位),則|z|=( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}+bx+c,x≤0\\ lnx,x>0\end{array}\right.$,若f(-4)=f(0),f(-2)=-2,則關(guān)于x的方程f(x)=x的根的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.給出下列四個(gè)結(jié)論:
①${∫}_{-a}^{a}$(x2+sinx)dx=18,則a=3;
②用相關(guān)指數(shù)R2來刻畫回歸效果,R2的值越大,說明模型的擬合效果越差;
③若f(x)是定義在R上的奇函數(shù),且滿足f(x+2)=-f(x),則函數(shù)f(x)的圖象關(guān)于x=1對(duì)稱;
④已知隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),P(ξ≤4)=0.79,則P(ξ<-2)=0.21;
其中正確結(jié)論的序號(hào)為①③④.

查看答案和解析>>

同步練習(xí)冊(cè)答案