(本小題14分)
如圖,在直三棱柱中,,點在邊上,
(1)求證:平面;
(2)如果點的中點,求證:平面 .
(1)證明見解析。
(2)證明見解析。
(1)在直三棱柱中,平面,
平面,∴,                  
,
平面。     ……………………6分
(2)由(1)得∴,
∵在中,,
邊上的中點,     ……………………9分
連結,∵點的中點,

∴在直三棱柱中,四邊形為平行四邊形,
,又,∴,∴四邊形為平行四邊形!12分
,又平面平面,
平面。                                             ……………………14分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
如圖,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF且BE<CF,∠BCF=,AD=,EF=2.
(Ⅰ)求證: AE∥平面DCF;
(Ⅱ)若,且二面角A—EF—C的大小為,求的長。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題共12分)如圖,在四棱錐中,底面四邊長為1的菱形,, , ,的中點,的中點,求異面直線OC與MN所成角的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知直三棱柱ABCA1B1C1。EF分別是棱CC1、AB中點。
(1)求證:;
(2)求四棱錐A—ECBB1的體積;
(3)判斷直線CF和平面AEB1的位置關系,并加以證明。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分8分)
如圖,正方體 的棱長是2,
(1)求正方體的外接球的表面積;
(2)求

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
已知ABCD是矩形,AD=4,AB=2,E、F分別是線段AB、BC的中點,PA⊥面ABCD。
(1)證明:PF⊥FD;
(2)在PA上是否存在點G,使得EG//平面PFD。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)如圖,在棱長為2的正方體ABCD -A1B1C1D1中,E、F分別為A1D1CC1 的中點.

(1)求證:EF∥平面ACD1;
(2)求面EFB與底面ABCD所成的銳二面角余弦值的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直三棱柱ABC—A1B1C1中,,直線B1C與平面ABC成30°角。


 
  (1)求證:平面B1AC⊥平面ABB1A1

  (2)求二面角B——A的正切值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在空間中,下列命題正確的是( )
A.兩組對邊分別相等的四邊形是平面圖形B.四條邊都相等的四邊形是平面圖形
C.一組對邊平行的四邊形是平面圖形D.對角相等的四邊形是平面圖形

查看答案和解析>>

同步練習冊答案