(本小題14分)
如圖,在直三棱柱
中,
,點
在邊
上,
。
(1)求證:
平面
;
(2)如果點
是
的中點,求證:
平面
.
(1)在直三棱柱
中,
平面
,
平面
,∴
,
又
,
,
∴
平面
。 ……………………6分
(2)由(1)得∴
,
∵在
中,
,
∴
為
邊上的中點, ……………………9分
連結
,∵點
是
的中點,
∴在直三棱柱
中,四邊形
為平行四邊形,
∴
,又
,∴
,∴四邊形
為平行四邊形!12分
∴
,又
平面
,
平面
,
∴
平面
。 ……………………14分
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)
如圖,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF且BE<CF,∠BCF=
,AD=
,EF=2.
(Ⅰ)求證: AE∥平面DCF;
(Ⅱ)若
,且二面角A—EF—C的大小為
,求
的長。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題共12分)如圖,在四棱錐
中,底面
四邊長為1的菱形,
,
,
,
為
的中點,
為
的中點,求異面直線OC與MN所成角的余弦值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知直三棱柱
ABC—
A1B1C1,
。
E、
F分別是棱
CC1、
AB中點。
(1)求證:
;
(2)求四棱錐
A—ECBB1的體積;
(3)判斷直線
CF和平面
AEB1的位置關系,并加以證明。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分8分)
如圖,正方體
的棱長是2,
(1)求正方體
的外接球的表面積;
(2)求
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)
已知ABCD是矩形,AD=4,AB=2,E、F分別是線段AB、BC的中點,PA⊥面ABCD。
(1)證明:PF⊥FD;
(2)在PA上是否存在點G,使得EG//平面PFD。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分)如圖,在棱長為2的正方體
ABCD -A1B1C1D1中,
E、F分別為
A1D1和
CC1 的中點.
(1)求證:
EF∥平面
ACD1;
(2)求面EFB與底面ABCD所成的銳二面角余弦值的大。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在直三棱柱ABC—A
1B
1C
1中,
,
,直線B
1C與平面ABC成30°角。
(1)求證:平面B
1AC⊥平面ABB
1A
1; (2)求二面角B—
—A的正切值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
在空間中,下列命題正確的是( )
A.兩組對邊分別相等的四邊形是平面圖形 | B.四條邊都相等的四邊形是平面圖形 |
C.一組對邊平行的四邊形是平面圖形 | D.對角相等的四邊形是平面圖形 |
查看答案和解析>>