2.設(shè)矩陣A=$(\begin{array}{l}{0}&{1}&{0}\\{1}&{0}&{-1}\\{0}&{1}&{0}\end{array})$,若矩陣X滿(mǎn)足X-XA2-AX+AXA2=E,其中E為3階單位矩陣,求X.

分析 由X-XA2-AX+AXA2=E,將其轉(zhuǎn)化成(E-A)X(E-A2)=E,由丨E-A丨=1,丨E-A2丨=-1,E-A和E-A2可逆,分別求得其逆矩陣,X=(E-A)-1(E-A2-1,即可求得X.

解答 解:X-XA2-AX+AXA2=E,
∴X(E-A2)-AX(E-A2)=E,
∴(E-A)X(E-A2)=E,
E-A=$[\begin{array}{l}{1}&{-1}&{0}\\{-1}&{1}&{1}\\{0}&{-1}&{1}\end{array}]$,E-A2=$[\begin{array}{l}{0}&{0}&{1}\\{0}&{1}&{0}\\{-1}&{0}&{2}\end{array}]$,
丨E-A丨=1,丨E-A2丨=-1,
∴E-A和E-A2可逆,
(E-A)-1=$\frac{1}{丨E-A丨}$(E-A)*=$[\begin{array}{l}{2}&{1}&{-1}\\{1}&{1}&{-1}\\{1}&{1}&{0}\end{array}]$,
(E-A2-1=$\frac{1}{丨E-{A}^{2}丨}$(E-A2)*=$[\begin{array}{l}{2}&{0}&{-1}\\{0}&{1}&{0}\\{1}&{0}&{0}\end{array}]$,
∴X=(E-A)-1(E-A2-1=$[\begin{array}{l}{2}&{1}&{-1}\\{1}&{1}&{-1}\\{1}&{1}&{0}\end{array}]$$[\begin{array}{l}{2}&{0}&{-1}\\{0}&{1}&{0}\\{1}&{0}&{0}\end{array}]$=$[\begin{array}{l}{3}&{1}&{-2}\\{1}&{1}&{-1}\\{2}&{1}&{-1}\end{array}]$,
∴X=$[\begin{array}{l}{3}&{1}&{-2}\\{1}&{1}&{-1}\\{2}&{1}&{-1}\end{array}]$.

點(diǎn)評(píng) 本題考查矩陣的變換,考查矩陣可逆的充要條件及求逆矩陣的方法,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=2sin($\frac{1}{3}$x-$\frac{π}{6}$),x∈R.
(1)求f(0)的值;
(2)設(shè)α∈[0,$\frac{π}{2}$],β∈[π,$\frac{3π}{2}$],f(3α+$\frac{π}{2}$)=$\frac{10}{13}$,f(3β+2π)=-$\frac{6}{5}$,求sin(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列函數(shù)中,既是偶函數(shù),又在(0,1)上為減函數(shù)的是( 。
A.y=x${\;}^{\frac{1}{2}}}$B.y=log3xC.y=cosxD.y=|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在△ABC中,B=60°,AC=$\sqrt{3}$,求
(1)△ABC面積的最大值;
(2)△ABC周長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若函數(shù)f(x)=-x2-2(m-1)x+5在區(qū)間(-∞,-5]上單調(diào)遞增,則實(shí)數(shù)m的取值范圍是m≤6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=ln(3x+2)-$\frac{3}{2}$x2
(Ⅰ)求f(x)的極值;
(Ⅱ)若對(duì)任意x∈[1,2],不等式|a-lnx|+ln|f′(x)+3x|>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若2<a<3,5<b<6,f(x)=logax+$\frac{3}{4}$x-b有正整數(shù)零點(diǎn)x0,則x0=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)函數(shù)f(x)=(2x2-4ax)lnx,a∈R.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若對(duì)任意x∈[1,+∞),f(x)+x2-a>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.作出下列各組函數(shù)的圖象.并觀察它們之間的關(guān)系.
①y=$\frac{1}{x}$    ②y=$\frac{1}{x+1}$    ③y=$\frac{1}{x}$+1.

查看答案和解析>>

同步練習(xí)冊(cè)答案