設(shè)函數(shù)f(x)可導,則
lim
△x→0
f(1+△x)-f(1)
△x
=( 。
A、f′(1)
B、f′(x)
C、-f′(1)
D、-f′(x)
考點:變化的快慢與變化率
專題:導數(shù)的概念及應用
分析:根據(jù)導數(shù)的定義即可求出
解答: 解:因為函數(shù)f(x)可導,
所以
lim
△x→0
f(1+△x)-f(1)
△x
=f′(1),
故選:A
點評:本題考查了導數(shù)的定義,屬于基礎(chǔ)題
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=8x的焦點F到雙曲線C:
y2
a2
-
x2
b2
=1(a>0,b>0)漸近線的距離為
4
5
5
,點P是拋物線y2=8x上的一動點,P到雙曲線C的上焦點F1(0,c)的距離與到直線x=-2的距離之和的最小值為3,則該雙曲線的方程為( 。
A、
y2
2
-
x2
3
=1
B、
y2
4
-x2=1
C、y2-
x2
4
=1
D、
y2
3
-
x2
2
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=1,
nan-an+1
an+1
=n,n∈N.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=
2n
an
,數(shù)列{bn}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的中心在坐標原點,右焦點為F(1,0),A、B是橢圓C的左、右頂點,D是橢圓C上異于A、B的動點,且△ADB面積的最大值為
2

(1)求橢圓C的方程;
(2)是否存在一定點E(x0,0)(0<x0
2
),使得當過點E的直線l與曲線C相交于A,B兩點時,
1
|
EA
|
2
+
1
|
EB
|
2
為定值?若存在,求出定點和定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一條光線從原點(0,0)射到直線l:2x-y+5=0上,再經(jīng)反射后過B(1,3),求反射光線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C經(jīng)過A(1,1),B(4,-2)兩點,且圓心在直線y=-2x上.
(1)求圓C的方程;
(2)是否存在斜率為1的直線l,使l被圓C截得的弦EF,以EF為直徑的圓經(jīng)過原點O.若存在,寫出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在如圖所示的莖葉圖中,乙組數(shù)據(jù)的中位數(shù)是( 。
A、84B、85C、86D、87

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)圓的方程是x2+y2+2ax+2y+(a-1)2=0,0<a<1時原點與圓的位置關(guān)系是(  )
A、原點在圓上B、原點在圓外
C、原點在圓內(nèi)D、不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=loga|x|(a>0且a≠1),偶函數(shù)g(x)滿足g(1+x)=g(1-x),且當x∈[0,1]時,g(x)=x,若在區(qū)間[-5,5]內(nèi),函數(shù)F(x)=f(x)-g(x)有六個不同的零點,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案