【題目】已知函數(shù)f(x)=x2-2(a+1)x+2alnx

(1)若a=2. 求f(x)的極值. (2)若a>0. 求f(x)的單調區(qū)間.

【答案】(1) .(2)詳見解析.

【解析】試題分析:先求解(2):定義域為,對函數(shù)求導得,由于,故分為三類,討論函數(shù)的單調區(qū)間.(1)由前面的分析可知,當時,增區(qū)間為,減區(qū)間為,故極小值為,極大值為.

試題解析:由題知, x>0, ,

令f′(x)=0得x1=a,x2=1, 當0<a<1時,在x∈(0,a)或x∈(1,+∞)時,f′(x)>0,

在x∈(a,1)時,f′(x)<0,

所以f(x)的單調遞增區(qū)間為(0,a)和(1,+∞),單調遞減區(qū)間為(a,1);當a=1時, ,

所以f(x)的單調遞增區(qū)間為(0,+∞); 當a>1時,在x∈(0,1)或x∈(a,+∞)時,f′(x)>0,在x∈(1,a)時,f′(x)<0,

所以f(x)的單調遞增區(qū)間為(0,1)和(a,+∞),單調遞減區(qū)間為(1,a).

(1)當a=2時,在x∈(0,1)或x∈(2,+∞)時,f′(x)>0,在x∈(1,2)時,f′(x)<0,

所以x=1時有極大值:

所以x=2時有極大值:

(2)綜上:當0<a<1時,f(x)的單調遞增區(qū)間為(0,a)和(1,+∞),單調遞減區(qū)間為(a,1);

當a=1時,f(x)的單調遞增區(qū)間為(0,+∞);

當a>1時,f(x)的單調遞增區(qū)間為(0,1)和(a,+∞),單調遞減區(qū)間為(1,a).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,且.

(1)求數(shù)列的通項公式,并寫出推理過程;

(2)令,試比較的大小,并給出你的證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,已知AD=4, ,AB=2CD=8.

(1)設M是PC上的一點,證明:平面MBD⊥平面PAD;

(2)當M點位于線段PC什么位置時,PA∥平面MBD?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有兩個不透明的箱子,每個箱子都裝有4個完全相同的小球,球上分別標有數(shù)字1,2,3,4.

(1)甲從其中一個箱子中摸出一個球,乙從另一個箱子摸出一個球,誰摸出的球上標的數(shù)字大誰就獲勝(若數(shù)字相同則為平局),求甲獲勝的概率;

(2)摸球方法與(1)同,若規(guī)定:兩人摸到的球上所標數(shù)字相同甲獲勝,所標數(shù)字不相同則乙獲勝,這樣規(guī)定公平嗎?請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是函數(shù)的一個極值點.

(1)求;

(2)求函數(shù)的單調區(qū)間;

(3)若直線與函數(shù)的圖象有3個交點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,短軸兩個端點為,且四邊形是邊長為2的正方形.

(1)求橢圓的方程;

(2)若分別是橢圓長軸的左、右端點,動點滿足,連結,交橢圓于點,證明:為定值;

(3)在(2)的條件下,試問軸上是否存在異于點的定點,使得以為直徑的圓恒過直線的交點,若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1求函數(shù)的單調遞減區(qū)間;

2若關于的方程在區(qū)間上有兩個不等的根,求實數(shù)的取值范圍;

3若存在,當時,恒有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為常數(shù), 是自然對數(shù)的底數(shù)),曲線在點處的切線方程是.

(1)求的值;(2)求的單調區(qū)間;

(3)設(其中的導函數(shù))。證明:對任意,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學參加科普知識競賽,需回答3個問題,競賽規(guī)則規(guī)定:答對第一、二、三問題分別得100分、100分、200分,答錯得零分,假設這名同學答對第一、二、三個問題的概率分別為0.8、0.7、0.6,且各題答對與否相互之間沒有影響.

(1)求這名同學得300分的概率;

(2)求這名同學至少得300分的概率.

查看答案和解析>>

同步練習冊答案