【題目】如圖,在梯形中,,四邊形為矩形,平面平面.

(1)求證:平面

(2)點(diǎn)在線(xiàn)段上運(yùn)動(dòng),設(shè)平面與平面所成二面角為,試求的取值范圍.

【答案】(1)證明見(jiàn)解析;(2).

【解析】

試題分析:(1)證明線(xiàn)面垂直可以利用面面垂直進(jìn)行證明,即若兩個(gè)平面垂直并且其中一個(gè)平面內(nèi)的一條直線(xiàn)與兩個(gè)平面的交線(xiàn)操作時(shí)則直線(xiàn)與另一個(gè)平面垂直,即可證明線(xiàn)面垂直;(2)建立空間坐標(biāo)系,根據(jù)坐標(biāo)表示出兩個(gè)平面的法向量,結(jié)合向量的有關(guān)運(yùn)算求出二面角的余弦的表達(dá)式,再利用函數(shù)的有關(guān)知識(shí)求出余弦的范圍.

試題解析:(1)證明:在梯形中,因?yàn)?/span>,所以,所以

所以,所以.

因?yàn)槠矫?/span>平面,平面平面,

平面,所以平面.

(2)由(1)可建立分別以直線(xiàn)軸,軸,軸的如圖所示的空間直角坐標(biāo)系,

,則

,

設(shè)為平面的一個(gè)法向量,

,取,則,

是平面的一個(gè)法向量.

.

,當(dāng)時(shí),有最小值,當(dāng)時(shí),有最大值.

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若在區(qū)間上的最大值為,求的值;

(3)若,有不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在實(shí)數(shù)中定義一種新運(yùn)算: ,對(duì)實(shí)數(shù)經(jīng)過(guò)運(yùn)算后是一個(gè)確定的唯一的實(shí)數(shù)。運(yùn)算有如下性質(zhì):(1)對(duì)任意實(shí)數(shù) ;(2)對(duì)任意實(shí)數(shù), 那么:關(guān)于函數(shù)的性質(zhì)下列說(shuō)法正確的是:①函數(shù)的最小值為3;②函數(shù)是偶函數(shù);③函數(shù)上為減函數(shù),這三種說(shuō)法正確的有__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為選拔參加“全市高中數(shù)學(xué)競(jìng)賽”的選手,某中學(xué)舉行了一次“數(shù)學(xué)競(jìng)賽”活動(dòng).為了了解本次競(jìng)賽學(xué)生的成績(jī)情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿(mǎn)分為分)作為樣本(樣本容量為)進(jìn)行統(tǒng)計(jì).按照的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在的數(shù)據(jù)).

(1)求樣本容和頻率分布直方圖中的值并求出抽取學(xué)生的平均分;

(2)在選取的樣本中,從競(jìng)賽成績(jī)?cè)?/span>分以上(含)的學(xué)生中隨機(jī)抽取名學(xué)生參加“全市中數(shù)學(xué)競(jìng)賽”求所抽取的名學(xué)生中至少有一人得分在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】劉徽是我國(guó)魏晉時(shí)期著名的數(shù)學(xué)家,他編著的《海島算經(jīng)》中有一問(wèn)題:“今有望海島,立兩表齊,高三丈,前后相去千步,令后表與前表相直。從前表卻行一百二十三步,人目著地取望島峰,與表末參合。從后表卻行百二十七步,人目著地取望島峰,亦與表末參合。問(wèn)島高幾何?” 意思是:為了測(cè)量海島高度,立了兩根表,高均為5步,前后相距1000步,令后表與前表在同一直線(xiàn)上,從前表退行123步,人恰觀測(cè)到島峰,從后表退行127步,也恰觀測(cè)到島峰,則島峰的高度為( )(注:3丈=5步,1里=300步)

A. 4里55步 B. 3里125步 C. 7里125步 D. 6里55步

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐PABCD中,底面ABCD是正方形,側(cè)棱PD垂直于底面ABCD,PDDC,點(diǎn)E是PC的中點(diǎn)

(Ⅰ)求證:PA∥平面EBD;

)求二面角EBDP的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某科研小組研究發(fā)現(xiàn):一棵水蜜桃樹(shù)的產(chǎn)量(單位:百千克)與肥料費(fèi)用(單位:百元)滿(mǎn)足如下關(guān)系:,且投入的肥料費(fèi)用不超過(guò)5百元.此外,還需要投入其他成本(如施肥的人工費(fèi)等)百元.已知這種水蜜桃的市場(chǎng)售價(jià)為16元/千克(即16百元/百千克),且市場(chǎng)需求始終供不應(yīng)求.記該棵水蜜桃樹(shù)獲得的利潤(rùn)為(單位:百元).

(1)求利潤(rùn)函數(shù)的函數(shù)關(guān)系式,并寫(xiě)出定義域;

(2)當(dāng)投入的肥料費(fèi)用為多少時(shí),該水蜜桃樹(shù)獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】先后2次拋擲一枚骰子,將得到的點(diǎn)數(shù)分別記為

)求滿(mǎn)足的概率;

)設(shè)三條線(xiàn)段的長(zhǎng)分別為5,求這三條線(xiàn)段能?chē)傻妊切危ê冗吶切危┑母怕剩?/span>

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了對(duì)某課題進(jìn)行研究,用分層抽樣方法從三所高校的相關(guān)人員中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見(jiàn)下表(單位:人)

高校

相關(guān)人數(shù)

抽取人數(shù)

A

18


B

36

2

C

54


)求,;

)若從高校抽取的人中選2人作專(zhuān)題發(fā)言,求這二人都來(lái)自高校的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案