【題目】劉徽是我國魏晉時期著名的數(shù)學(xué)家,他編著的《海島算經(jīng)》中有一問題:“今有望海島,立兩表齊,高三丈,前后相去千步,令后表與前表相直。從前表卻行一百二十三步,人目著地取望島峰,與表末參合。從后表卻行百二十七步,人目著地取望島峰,亦與表末參合。問島高幾何?” 意思是:為了測量海島高度,立了兩根表,高均為5步,前后相距1000步,令后表與前表在同一直線上,從前表退行123步,人恰觀測到島峰,從后表退行127步,也恰觀測到島峰,則島峰的高度為( )(注:3丈=5步,1里=300步)
A. 4里55步 B. 3里125步 C. 7里125步 D. 6里55步
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域為為的導(dǎo)函數(shù).
(1)求方程的解集;
(2)求函數(shù)的最大值與最小值;
(3)若函數(shù)在定義域上恰有2個極值點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校用“10分制”調(diào)查本校學(xué)生對教師教學(xué)的滿意度,現(xiàn)從學(xué)生中隨機抽取16名,以下莖葉圖記錄了他們對該校教師教學(xué)滿意度的分數(shù)(以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉):
(Ⅰ)若教學(xué)滿意度不低于9.5分,則稱該生對教師的教學(xué)滿意度為“極滿意”.求從這16人中隨機選取3人,至少有1人是“極滿意”的概率;
(Ⅱ)以這16人的樣本數(shù)據(jù)來估計整個學(xué)校的總體數(shù)據(jù),若從該校所有學(xué)生中(學(xué)生人數(shù)很多)任選3人,記表示抽到“極滿意”的人數(shù),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的短軸長為2,且函數(shù)的圖象與橢圓僅有兩個公共點,過原點的直線與橢圓交于兩點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)點為線段的中垂線與橢圓的一個公共點,求面積的最小值,并求此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知焦點在軸上的橢圓的中心是原點,離心率為,以橢圓的端州的兩端點和兩焦點所圍成的四邊形的周長為8,直線:與軸交于點,與橢圓交于不同兩點,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中,,四邊形為矩形,平面平面.
(1)求證:平面;
(2)點在線段上運動,設(shè)平面與平面所成二面角為,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值;
(2)若,試討論關(guān)于的方程的解的個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(),,且直線與曲線相切.
(1)求的值;
(2)若對內(nèi)的一切實數(shù),不等式恒成立,求實數(shù)的取值范圍;
(3)求證: ().
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點處切線與直線垂直(其中為自然對數(shù)的底數(shù)).
(1)求的解析式及單調(diào)減區(qū)間;
(2)是否存在常數(shù),使得對于定義域的任意恒成立,若存在,求出 的值;若
不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com