5.已知向量$\overrightarrow{a}$=(2,-1),$\overrightarrow$=(m,3),若$\overrightarrow{a}$∥$\overrightarrow$,則m的值是-6.

分析 利用向量共線定理即可得出.

解答 解:∵$\overrightarrow{a}$∥$\overrightarrow$,
∴-m-6=0,
解得m=-6.
故答案為:-6.

點(diǎn)評(píng) 本題考查了向量共線定理的應(yīng)用,考查了計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖所示,在多面體ABCDEF中,四邊形ABCD為矩形,底面CDEF為直角梯形,且平面ABCD⊥平面CDEF,CF∥DE,CD⊥DE,AB=2BC=2CF=2,DE=3CF.
(1)試問(wèn):線段AE上是否存在一點(diǎn)P,使得PF∥平面ABCD?請(qǐng)說(shuō)明理由;
(2)若P是AE的中點(diǎn),求三棱錐P-CEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在△ABC中,∠A、∠B、∠C的對(duì)邊分別為a、b、c,已知tanA+tanC=$\frac{5}{4}$tanAtanC,且a、b、c成等比數(shù)列.
(1)求sinB的值;
(2)若△ABC的面積為4,求$\overrightarrow{BA}$•$\overrightarrow{BC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在平面直角坐標(biāo)系xoy中,橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,直線l:y=$\frac{1}{2}$x與橢圓E相交于A,B兩點(diǎn),AB=$4\sqrt{5}$,C,D是橢圓E上異于A,B兩點(diǎn),且直線AC,BD相交于點(diǎn)M,直線AD,BC相交于點(diǎn)N.
(1)求a,b的值;
(2)求證:直線MN的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.方程x2+y2-4x+2my+2m2-2m+1=0表示一個(gè)圓.
(1)求m的取值范圍;
(2)求這個(gè)圓的面積最大時(shí)圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知直線l經(jīng)過(guò)點(diǎn)A(1,3),求:
(1)直線l在兩坐標(biāo)軸上的截距相等的直線方程;
(2)直線l與兩坐標(biāo)軸的正半軸圍成三角形面積最小時(shí)的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1點(diǎn)的中點(diǎn),且AA1=AC=BC=$\frac{\sqrt{2}}{2}$AB.
(1)證明:BC1∥平面A1CD;
(2)求直線CE與平面A1CD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知等差數(shù)列{an}的首項(xiàng)a1=11,公差d=-2,則{an}的前n項(xiàng)和Sn的最大值為36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知橢圓E的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過(guò)M(2,1),N(2$\sqrt{2}$,0)兩點(diǎn).
(1)求橢圓E的方程;
(2)若平行于OM的直線l交橢圓E于兩個(gè)不同點(diǎn)A,B,直線MA與MB的斜率分別為k1,k2,試問(wèn):k1+k2是否為定值?若是,求出此定值;若不是,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案