【題目】華中師大附中中科教處為了研究高一學(xué)生對(duì)物理和數(shù)學(xué)的學(xué)習(xí)是否與性別有關(guān),從高一年級(jí)抽取60,名同學(xué)(男同學(xué)30名,女同學(xué)30名),給所有同學(xué)物理題和數(shù)學(xué)題各一題,讓每位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如下表:(單位:人)

(1)在犯錯(cuò)誤的概率不超過(guò)1%是條件下,能否判斷高一學(xué)生對(duì)物理和數(shù)學(xué)的學(xué)習(xí)與性別有關(guān)?

(2)經(jīng)過(guò)多次測(cè)試后發(fā)現(xiàn),甲每次解答一道物理題所用的時(shí)間5—8分鐘,乙每次解答一道物理題所用的時(shí)間為6—8分鐘,現(xiàn)甲、乙解同一道物理題,求甲比乙先解答完的概率;

(3)現(xiàn)從選擇做物理題的8名女生中任意選取兩人,對(duì)題目的解答情況進(jìn)行全程研究,記甲、乙兩女生被抽到的人數(shù)為,求的分布列和數(shù)學(xué)期望.

【答案】(1)見(jiàn)解析;(2);(3)見(jiàn)解析.

【解析】分析:(1)根據(jù)表中數(shù)據(jù)利用公式求出,從而得到在犯錯(cuò)誤概率不超過(guò)的前提下,不能判斷高一學(xué)生對(duì)物理和數(shù)學(xué)的學(xué)習(xí)與性別有關(guān);(2)設(shè)甲、乙解答一道物理題的時(shí)間分別為分鐘,由設(shè)甲每次解答一道物理題的時(shí)間分別為分鐘,乙每次解答一道物理題的時(shí)間分別為分鐘,利用線性規(guī)劃由幾何概型能求出甲比乙先解答完的概率;(3)由題意知在選擇物理題的8名女生中任意抽取兩人,抽取方法有種,可能取值為0,1,2,分別利用古典概型概率公式結(jié)合組合知識(shí)求出相應(yīng)的概率,由此能求出的分布列,利用期望公式可得.

詳解(1)由表中數(shù)據(jù)得的觀測(cè)值

在犯錯(cuò)誤概率不超過(guò)1%的前提下,不能判斷高一學(xué)生對(duì)物理和數(shù)學(xué)的學(xué)習(xí)與性別有關(guān).

(2)設(shè)甲、乙解答一道物理題的時(shí)間分別為分鐘,則,設(shè)事件為“甲比乙先解答完此題”,則,作出可行域如圖

.

(3)由題設(shè)可知選擇做物理題的8名女生中任意抽取兩人,抽取方法有種,其中甲、乙兩人沒(méi)有一個(gè)人被抽到有種,恰有一人被抽到有種,兩人都被抽到有

可能取值為0,1,2,

的分布列為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱,,,側(cè)面底面.

(1)求證平面

(2),,求棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次奧運(yùn)會(huì)男子羽毛球單打比賽中,運(yùn)動(dòng)員甲和乙進(jìn)入了決賽.假設(shè)每局比賽甲獲勝的概率為0.6,乙獲勝的概率為0.4.利用計(jì)算機(jī)模擬試驗(yàn),估計(jì)甲獲得冠軍的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】連續(xù)拋擲同一顆骰子3次,則3次擲得的點(diǎn)數(shù)之和為9的概率是____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋中有7個(gè)球,其中4個(gè)白球,3個(gè)紅球,從袋中任意取出2個(gè)球,求下列事件的概率:

(1) 取出的2個(gè)球都是白球;

(2)取出的2個(gè)球中1個(gè)是白球,另1個(gè)是紅球.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】寫(xiě)出下列命題的否定,并判斷所得命題的真假:

1)二次函數(shù)的圖像的頂點(diǎn)坐標(biāo)是;

2)正數(shù)的立方根都是正數(shù);

3)存在一個(gè)最大的內(nèi)角小于60°的三角形;

4)對(duì)任意實(shí)數(shù)t,點(diǎn)都在一次函數(shù)的圖像上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

(1)求曲線和曲線的極坐標(biāo)方程;

(2)已知射線),將射線順時(shí)針?lè)较蛐D(zhuǎn)得到,且射線與曲線交于兩點(diǎn),射線與曲線交于兩點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)一位高三班主任對(duì)本班50名學(xué)生學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行調(diào)查,得到的統(tǒng)計(jì)數(shù)據(jù)如表所示:

積極參加班級(jí)工作

不積極參加班級(jí)工作

合計(jì)

學(xué)習(xí)積極性高

18

7

25

學(xué)習(xí)積極性不高

6

19

25

合計(jì)

24

26

50

(1)如果隨機(jī)調(diào)查這個(gè)班的一名學(xué)生,那么抽到不積極參加班級(jí)工作且學(xué)習(xí)積極性不高的學(xué)生的概率是多少?

(2)若不積極參加班級(jí)工作且學(xué)習(xí)積極性高的7名學(xué)生中有兩名男生,現(xiàn)從中抽取2名學(xué)生參加某項(xiàng)活動(dòng),問(wèn)2名學(xué)生中有1名男生的概率是多少?

(3)學(xué)生的學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度是否有關(guān)系?請(qǐng)說(shuō)明理由.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若,求的零點(diǎn)個(gè)數(shù);

2)若,證明:,.

查看答案和解析>>

同步練習(xí)冊(cè)答案