正三棱柱中,,,D、E分別是、的中點(diǎn),

(1)求證:面⊥面BCD;
(2)求直線與平面BCD所成的角.
(1)見(jiàn)解析;(2).

試題分析:(1)易證⊥面,可得面⊥面;
(2)面,過(guò)A作于點(diǎn)O,則于O,連接BO,即為所求二面角的一個(gè)平面角,
(1)在正三棱柱中,有,所以,可得面⊥面;
(2)面于DF,過(guò)A作AO⊥DF于點(diǎn)O,則AO⊥面BCD于O,連接BO,即為所求二面角的一個(gè)平面角,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,三棱柱ABC-A1B1C1的底面是邊長(zhǎng)為2的正三角形且側(cè)棱垂直于底面,側(cè)棱長(zhǎng)是,D是AC的中點(diǎn).
 
(1)求證:B1C∥平面A1BD;
(2)求二面角A1-BD-A的大。
(3)求直線AB1與平面A1BD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐A—BCC1B1中,等邊三角形ABC所在平面與正方形BCC1B1所在平面互相垂直,D為CC1的中點(diǎn).

(1)求證:BD⊥AB1
(2)求二面角B—AD—B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,三棱柱是直棱柱,.點(diǎn)分別為的中點(diǎn).

(1)求證:平面;
(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知四棱錐P-ABCD,底面ABCD是,邊長(zhǎng)為的菱形,又,且PD=CD,點(diǎn)M、N分別是棱AD、PC的中點(diǎn).

(1)證明:DN//平面PMB;
(2)證明:平面PMB平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列命題正確的是(  )
A.若兩條直線和同一個(gè)平面所成的角相等,則這兩條直線平行
B.若一個(gè)平面內(nèi)有三個(gè)點(diǎn)到另一個(gè)平面的距離相等,則這兩個(gè)平面平行
C.若一條直線平行于兩個(gè)相交平面,則這條直線與這兩個(gè)平面的交線平行
D.若兩個(gè)平面都垂直于第三個(gè)平面,則這兩個(gè)平面平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在正方體AC1中,若點(diǎn)P在對(duì)角線AC1上,且P點(diǎn)到三條棱CD 、A1D1、 BB1的距離都相等,則這樣的點(diǎn)共有  (   )
A.1 個(gè)        B.2 個(gè)      C.3 個(gè)         D.無(wú)窮多個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

等邊三角形ABC與正方形ABDE有一公共邊AB,二面角C-AB-D的余弦值為,M,N分別是AC,BC的中點(diǎn),則EM,AN所成角的余弦值等于________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知m,n是兩條不同直線,是兩個(gè)不同平面,以下命題正確的是(   )
A.若
B.若
C.若
D.若

查看答案和解析>>

同步練習(xí)冊(cè)答案