解:(1)∵{a
n}是等差數(shù)列,a
3=11,S
9=153,
∴9a
5=153,
∴a
5=17,
∴其公差d=
=3,
∴a
n=a
5+(n-5)×d=17+(n-5)×3=3n+2;
(2)∵b
n=
,a
n=3n+2,
∴
=
=2
d=2
3=8,且b
1=2
5=32,
∴{b
n}是以32為首項(xiàng),8為公比的等比數(shù)列,
∴其前n項(xiàng)和A
n=
(8
n-1);
(3)∵a
n=3n+2,
∴
=
=
(
-
),
∴B
n=
[(
-
)+(
-
)+…+(
-
)]
=
(
-
)
=
.
分析:(1)依題意,解關(guān)于等差數(shù)列{a
n}的首項(xiàng)與公差的方程組即可求得a
1與公差d,從而可得數(shù)列{a
n}的通項(xiàng)公式;
(2)利用等比數(shù)列的定義可證{b
n}是等比數(shù)列,利用等比數(shù)列的求和公式即可求得其前n項(xiàng)和A
n.
(3)利用裂項(xiàng)法即可求得{
}前n項(xiàng)和B
n.
點(diǎn)評(píng):本題考查等差數(shù)列的通項(xiàng)公式與求和,考查等比數(shù)列的判斷與求和,突出裂項(xiàng)法求和的考查,屬于中檔題.