17.已知|an|是遞增的等差數(shù)列,a1,a2是函數(shù)f(x)=x2-10x+21的兩個(gè)零點(diǎn).
(1)求數(shù)列|an|的通項(xiàng)公式;
(2)記bn=an×3n,求數(shù)列|bn|的前n項(xiàng)和Sn

分析 (1)求出函數(shù)的零點(diǎn),得到數(shù)列的第一項(xiàng)與第三項(xiàng),求出公差,然后求解通項(xiàng)公式.
(2)利用錯(cuò)位相減法求解數(shù)列的或即可.

解答 解:(1)函數(shù)f(x)=x2-10x+21的兩個(gè)零點(diǎn)為3,7,
由題意得a1=3,a3=7.
設(shè)數(shù)列的公差為:d,則2d=4,d=2,數(shù)列{an}的通項(xiàng)公式:an=2n+1.
(2)bn=an×3n=(2n+1)×3n,可得${S_n}=3×3+5×{3^2}+…+({2n-1})×{3^{n-1}}+({2n+1})×{3^n}$,$3{S_n}=3×{3^2}+5×{3^3}+…+({2n-1})×{3^n}+({2n+1})×{3^{n+1}}$,
兩式相減得$-2{S_n}=9+2×({{3^2}+{3^3}+…+{3^n}})-({2n+1})×{3^{n+1}}=9+({{3^{n+1}}-9})-({2n+1})×{3^{n+1}}$,
所以${S_n}=n×{3^{n+1}}$.

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式以及數(shù)列求和,考查計(jì)算能力以及轉(zhuǎn)化思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,圓C的極坐標(biāo)是ρ=2asinθ,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=-\frac{3}{5}t+a}\\{y=\frac{4}{5}t}\end{array}\right.$(t為參數(shù)).
(1)若a=2,M為直線l與x軸的交點(diǎn),N是圓C上一動(dòng)點(diǎn),求|MN|的最大值;
(2)若直線l被圓C截得的弦長(zhǎng)為$2\sqrt{6}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知等差數(shù)列{an}滿足a1+a2=5,a2+a3=7,則a2016=(  )
A.2016B.2017C.2018D.2019

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=log2(x+1),g(x)=log2(3x+1).
(1)求出使g(x)≥f(x)成立的x的取值范圍;
(2)當(dāng)x∈[1,+∞)時(shí),求函數(shù)y=g(x)+f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.為了了解培訓(xùn)講座對(duì)某工廠工人生產(chǎn)時(shí)間(生產(chǎn)一個(gè)零件所用的時(shí)間,單位:分鐘)的影響.從工廠隨機(jī)選取了200名工人,再將這200名工人隨機(jī)的分成A,B兩組,每組100人.A組參加培訓(xùn)講座,B組不參加.培訓(xùn)講座結(jié)束后A,B兩組中各工人的生產(chǎn)時(shí)間的調(diào)查結(jié)果分別為表1和表2.
                                                                                   表1:
生產(chǎn)時(shí)間[60,65)[65,70)[70,75)[75,80)
人數(shù)30402010
表2
生產(chǎn)時(shí)間[60,65)[65,70)[70,75)[75,80)[80,85)
人數(shù)1025203015
(1)甲、乙兩名工人是隨機(jī)抽取到的200名工人中的兩人,求甲、乙分在不同組的概率;
(2)完成圖3的頻率分布直方圖,比較兩組的生產(chǎn)時(shí)間的中位數(shù)的大小和兩組工人中個(gè)體間的差異程度的大;(不用計(jì)算,可通過(guò)直方圖直接回答結(jié)論)

(3)完成下面2×2列聯(lián)表,并回答能否有99.9%的把握認(rèn)為“工人的生產(chǎn)時(shí)間”與參加培訓(xùn)講座有關(guān)?
生產(chǎn)時(shí)間小于70分鐘生產(chǎn)時(shí)間不小于70分鐘合計(jì)
A組工人a=b=
B組工人c=d=
合計(jì)n=
下面臨界值表僅供參考:
P(K2≥k00.150.100.050.0250.010.0050.001
k02.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知log183=a,log518=b,用a,b表示log3690=$\frac{1+b}{2b-2ab}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)$\overrightarrow a=(sinx-1\;,\;\;cosx-1)$,$\overrightarrow b=({\frac{{\sqrt{2}}}{2}\;,\;\;\frac{{\sqrt{2}}}{2}})$
(1)若$\overrightarrow a$為單位向量,求x的值;
(2)設(shè)$f(x)=\overrightarrow a•\overrightarrow b$,則函數(shù)y=f(x)的圖象如何由y=sinx圖象得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知$|\overrightarrow a|=2$,$|\overrightarrow b|=3$,$|2\overrightarrow a-\overrightarrow b|=3$,則向量$\overrightarrow a,\overrightarrow b$夾角的余弦值為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+ax-b(x>0)}\\{0(x=0)}\\{g(x)(x<0)}\end{array}\right.$在區(qū)間(a+$\frac{4}{a}$,-b2+4b)上滿足f(-x)+f(x)=0,則g(-$\sqrt{2}$)的值為( 。
A.-2$\sqrt{2}$B.2$\sqrt{2}$C.-$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案