【題目】順義區(qū)教委對(duì)本區(qū)高一,高二年級(jí)學(xué)生體質(zhì)健康測(cè)試成績(jī)進(jìn)行抽樣分析.學(xué)生測(cè)試成績(jī)滿分為100分,90分及以上為優(yōu)秀,60分以下為不及格.先從兩個(gè)年級(jí)各抽取100名學(xué)生的測(cè)試成績(jī).其中高一年級(jí)學(xué)生測(cè)試成績(jī)統(tǒng)計(jì)結(jié)果如圖1,高二年級(jí)學(xué)生測(cè)試成績(jī)統(tǒng)計(jì)結(jié)果如表1.
分組 | 人數(shù) |
表1
(1)求圖1中a的值;
(2)為了調(diào)查測(cè)試成績(jī)不及格的同學(xué)的具體情況,決定從樣本中不及格的學(xué)生中抽取3人,用X表示抽取的3人中高二年級(jí)的學(xué)生人數(shù).求X的分布列及均值;
(3)若用以上抽樣數(shù)據(jù)估計(jì)全區(qū)學(xué)生體質(zhì)健康情況.用Y表示從全區(qū)高二年級(jí)全部學(xué)生中任取3人中成績(jī)優(yōu)秀的人數(shù),求EY的值;
(4)用,,分別表示樣本中高一,高二年級(jí)學(xué)生測(cè)試成績(jī)的方差,比較其大。ㄖ恍鑼(xiě)出結(jié)果).
【答案】(1)(2)分布列見(jiàn)解析;期望為(3)(4)
【解析】
(1)利用頻率之和為,求得的值.
(2)利用超幾何分布分布列和期望計(jì)算方法,計(jì)算出分布列和數(shù)學(xué)期望.
(3)利用二項(xiàng)分布期望的計(jì)算公式,計(jì)算出.
(4)根據(jù)高一、高二學(xué)生測(cè)試成績(jī)的離散程度,比較出,的大小關(guān)系.
(1),
.
(2)人,不及格共人.
,
,,,
X | 0 | 1 | 2 |
P |
.
(3)高二優(yōu)秀20人,共100人,
∴總體優(yōu)秀率為,
∴.
(4)由圖和表可知,高一成績(jī)較集中,高二成績(jī)較分散,所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圓,直線.
(1)證明:不論取什么數(shù),直線與圓恒交于兩點(diǎn);
(2)求直線被圓截得的線段的最短長(zhǎng)度,并求此時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知雙曲線.
(1)過(guò)曲線的左頂點(diǎn)作的兩條漸近線的平行線,求這兩組平行線圍成的平行四邊形的面積;
(2)設(shè)斜率為的直線交曲線于、兩點(diǎn),若與圓相切,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),
(1)求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求證:;
(2)當(dāng)時(shí),若不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)若,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正整數(shù),設(shè)長(zhǎng)方形的邊長(zhǎng),,邊、、上的點(diǎn),…,,,…,,,,,…,分別滿足,, .
(1)對(duì)于,2,…,,求與、與的交點(diǎn)所在的二次曲線的方程;
(2)若的延長(zhǎng)線上的點(diǎn),,…,滿足,對(duì)于,2,…,,求與的交點(diǎn)所在的二次曲線的方程;
(3)設(shè)在二次曲線上到的距離最大的點(diǎn)為,求與二次曲線上的點(diǎn)的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2018湖南(長(zhǎng)郡中學(xué)、株洲市第二中學(xué))、江西(九江一中)等十四校高三第一次聯(lián)考】已知函數(shù)(其中且為常數(shù), 為自然對(duì)數(shù)的底數(shù), ).
(Ⅰ)若函數(shù)的極值點(diǎn)只有一個(gè),求實(shí)數(shù)的取值范圍;
(Ⅱ)當(dāng)時(shí),若(其中)恒成立,求的最小值的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ln(2+ax)(a>0),(b∈R).
(1)若函數(shù)f(x)的圖象在點(diǎn)(3,f(3))處的切線與函數(shù)g(x)的圖象在點(diǎn)(1,g(1))處的切線平行,求a,b之間的關(guān)系;
(2)在(1)的條件下,若b=a,且f(x)≥mg(x)對(duì)任意x∈[,+∞)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com