分析 利用AD=AE,可得$∠AED=\frac{1}{2}({{{180}°}-∠A})$,根據(jù)四邊形ABCD的頂點(diǎn)在一個(gè)圓周上,可得180°-∠A=∠BCD,從而∠AED=∠DCO,即可證明O,E,C,D四點(diǎn)共圓.
解答 證明:因?yàn)锳D=AE,
所以$∠AED=\frac{1}{2}({{{180}°}-∠A})$,
因?yàn)樗倪呅蜛BCD的頂點(diǎn)在一個(gè)圓周上,
所以180°-∠A=∠BCD,
從而∠AED=∠DCO,
所以O(shè),E,C,D四點(diǎn)共圓.
點(diǎn)評(píng) 本題考查O,E,C,D四點(diǎn)共圓,考查學(xué)生分析解決問(wèn)題的能力,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,0)∪(0,$\frac{1}{7}$] | B. | [-1,0)∪(0,$\frac{1}{7}$] | C. | [-1,0)∪(0,$\frac{1}{7}$) | D. | [-1,$\frac{1}{7}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\sqrt{2}$,${2}^{\frac{e}{2}}$) | B. | (0,2] | C. | (2,2${\;}^{\frac{e+2}{2}}$] | D. | (2${\;}^{\frac{3}{2}}$,2${\;}^{\frac{e+4}{4}}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | sinA | B. | cosB | C. | tanA | D. | cotA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ±$\frac{3}{2}$ | B. | -$\frac{3}{2}$ | C. | $\frac{3}{2}$ | D. | 6 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com