【題目】如圖,菱形與正三角形的邊長(zhǎng)均為2,它們所在平面互相垂直, 平面,且.

(Ⅰ)求證: 平面;

(Ⅱ)若,求幾何體的體積.

【答案】(1)證明見(jiàn)解析;(2) .

【解析】試題分析:(1)根據(jù)線面垂直的性質(zhì)可得,再由線面平行的判定定理即可證明平面;(2)若,利用分割法結(jié)合棱錐和棱柱的體積公式即可求幾何體的體積.

試題解析:(Ⅰ)如圖,過(guò)點(diǎn),連接 .

平面平面, 平面,

平面平面, 平面.

平面, .

四邊形為平行四邊形, .

平面, 平面, 平面.

(Ⅱ)連接 .由題意,得.

平面,平面平面, 平面.

, 平面, 平面 平面,

同理,由,可證, 平面.

, 平面 平面.

平面平面, 到平面的距離等于的長(zhǎng).

為四棱錐的高,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高三(1)班全體女生的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的破壞但可見(jiàn)部分如圖所示,據(jù)此解答如下問(wèn)題

(1)求高三(1)班全體女生的人數(shù);

(2)求分?jǐn)?shù)在[80,90)之間的女生人數(shù)并計(jì)算頻率分布直方圖中[80,90)之間的矩形的高;

(3)若要從分?jǐn)?shù)在[80,100]之間的試卷中任取兩份分析女生失分情況在抽取的試卷中,求至少有一份分?jǐn)?shù)在[90,100]之間的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》中,將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽(yáng)馬,將四個(gè)面都為直角三角形的四面體稱之為鱉臑.

如圖,在陽(yáng)馬中,側(cè)棱底面,且, 中點(diǎn),點(diǎn)上,且平面,連接,

(Ⅰ)證明: 平面;

(Ⅱ)試判斷四面體是否為鱉臑,若是,寫出其每個(gè)面的直角(只需寫出結(jié)論);若不是,說(shuō)明理由;

(Ⅲ)已知, ,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),且

1)求函數(shù)上的單調(diào)區(qū)間,并給以證明;

2)設(shè)關(guān)于的方程的兩根為,試問(wèn)是否存在實(shí)數(shù),使得不等式對(duì)任意的恒成立?若存在,求出的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知指數(shù)函數(shù)

(1)函數(shù)過(guò)定點(diǎn),求的值;

(2)當(dāng)時(shí),求函數(shù)的最小值;

(3)是否存在實(shí)數(shù),使得(2)中關(guān)于的函數(shù)的定義域?yàn)?/span>時(shí),值域?yàn)?/span>?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙同學(xué)參加學(xué)!耙徽镜降住标J關(guān)活動(dòng),活動(dòng)規(guī)則:①依次闖關(guān)過(guò)程中,若闖關(guān)成功則繼續(xù)答題;若沒(méi)通關(guān)則被淘汰;②每人最多闖3關(guān);③闖第一關(guān)得10分,闖第二關(guān)得20分,闖第三關(guān)得30分,一關(guān)都沒(méi)過(guò)則沒(méi)有得分.已知甲每次闖關(guān)成功的概率為,乙每次闖關(guān)成功的概率為. 

(Ⅰ)設(shè)乙的得分總數(shù)為,求得分布列和數(shù)學(xué)期望;

(Ⅱ)求甲恰好比乙多30分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若存在實(shí)數(shù)使得不等式成立,求實(shí)數(shù)的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若存在兩個(gè)正實(shí)數(shù),使得等式成立(其中為自然對(duì)數(shù)的底數(shù)),則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 ,且方程 無(wú)實(shí)數(shù)根,下列命題:

1)方程 一定有實(shí)數(shù)根;

2)若 ,則不等式 對(duì)一切實(shí)數(shù) 都成立;

3)若 ,則必存在實(shí)數(shù) ,使 ;

4)若 ,則不等式 對(duì)一切實(shí)數(shù) 都成立.

其中,正確命題的序號(hào)是________________.(把你認(rèn)為正確的命題的所有序號(hào)都填上)

查看答案和解析>>

同步練習(xí)冊(cè)答案