在ABCD中,A(1,1),=(6,0),點(diǎn)M是線段AB的中點(diǎn),線段CM與BD交于點(diǎn)P.
(1)若=(3,5),求點(diǎn)C的坐標(biāo);
(2)當(dāng)||=||時(shí),求點(diǎn)P的軌跡.
(1)C(10,6)(2)P的軌跡是以(5,1)為圓心,2為半徑的圓去掉與直線y=1的兩個(gè)交點(diǎn)
(1)設(shè)點(diǎn)C坐標(biāo)為(x0,y0),
又=+=(3,5)+(6,0)=(9,5),
即(x0-1,y0-1)=(9,5),
∴x0=10,y0=6,即點(diǎn)C(10,6).
(2)由三角形相似,不難得出=2
設(shè)P(x,y),則
=-=(x-1,y-1)-(6,0)=(x-7,y-1),
=+=+3
=+3(-)
=3-=(3(x-1),3(y-1))-(6,0)
=(3x-9,3y-3),
∵||=||,∴ABCD為菱形,
∴AC⊥BD,
∴⊥,即(x-7,y-1)·(3x-9,3y-3)=0.
(x-7)(3x-9)+(y-1)(3y-3)=0,
∴x2+y2-10x-2y+22=0(y≠1).
∴(x-5)2+(y-1)2=4(y≠1).
故點(diǎn)P的軌跡是以(5,1)為圓心,2為半徑的圓去掉與直線y=1的兩個(gè)交點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
AB |
AD |
AB |
AD |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在ABCD中,A(1,1),=(6,0),點(diǎn)M是線段AB的中點(diǎn),線段CM與BD交于點(diǎn)P.
(1)若=(3,5),求點(diǎn)C的坐標(biāo);
(2)當(dāng)||=||時(shí),求點(diǎn)P的軌跡.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年高考數(shù)學(xué)復(fù)習(xí):4.2 平面向量的基本定理及坐標(biāo)表示(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com