已知曲線y=x2,則過點(diǎn)A(3,5)的切線方程為
 
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:設(shè)切點(diǎn)坐標(biāo),可得切線方程,將A(3,5)及y0=x02代入求出切點(diǎn)坐標(biāo),從而可求出切線方程.
解答: 解:∵y=x2,∴y′=2x.
設(shè)切點(diǎn)坐標(biāo)為(x0,y0),則切線方程為y-y0=2x0(x-x0).
將A(3,5)及y0=x02代入,可得5-x02=2x0(3-x0),
解得x0=1或x0=5,
∴設(shè)切點(diǎn)坐標(biāo)為(1,1)或(5,25),
∴曲線過點(diǎn)A(3,5)的切線方程為2x-y-1=0或10x-y-25=0.
故答案為:2x-y-1=0或10x-y-25=0.
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,同時(shí)考查了計(jì)算能力和轉(zhuǎn)化的思想,解曲線的切線問題要特別注意是“在”還是“過”點(diǎn).屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
lnx
x
的圖象為曲線C.
(1)求曲線C:y=f(x)在點(diǎn)A(1,0)處的切線l的方程.
(2)證明:除切點(diǎn)(1,0)之外,切線l在曲線C的上方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinωx•cosωx+
3
cos2ωx-
3
2
(ω>0),直線x=x1,x=x2是y=f(x)圖象的任意兩條對(duì)稱軸,且|x1-x2|的最小值為
π
4

(Ⅰ)求f(x)在x∈[-π,0]的單調(diào)增區(qū)間;
(Ⅱ)將函數(shù)f(x)的圖象向右平移
π
8
個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來的2倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,若關(guān)于x的方程g(x)+k=0,在區(qū)間[0,
π
2
]上有解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且2Sn=9-an,bn=3-2log3an
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)令cn=
b n
a n
,求數(shù)列{cn}的前n項(xiàng)和Tn;
(Ⅲ)證明:當(dāng)n≥2時(shí),a2nbn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2
3
cos2x+2sin(π-x)cos(-x)+a-
3
(x∈R,a∈R,a為常數(shù)).
(Ⅰ)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(Ⅱ)先將函數(shù)y=f(x)的圖象向右平移
π
6
個(gè)單位,然后將得到函數(shù)圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來的2倍,縱坐標(biāo)不變,得到y(tǒng)=g(x)的圖象,若當(dāng)x∈[
π
6
π
3
],g(x)的最小值為2,求a的值及函數(shù)y=g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=
1
2
,an=
2-n
n
Sn,則
lim
n→∞
(S1+S2+…+Sn)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某廠生產(chǎn)某種產(chǎn)品x件的總成本c(x)=1200+
2
75
x3(萬(wàn)元),已知產(chǎn)品單價(jià)的平方與產(chǎn)品件數(shù)x成反比,生產(chǎn)100件這樣的產(chǎn)品單價(jià)為50萬(wàn)元,產(chǎn)量定為多少時(shí)總利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:在平面內(nèi),點(diǎn)M到定圓C的圓周上任意一點(diǎn)的距離的最小值稱為點(diǎn)M到定圓C的“美好距離”,若定圓P的方程:x2+y2+2x-3=0,平面內(nèi)的動(dòng)點(diǎn)F到定點(diǎn)A的距離等于F到定圓P的美好距離,則動(dòng)點(diǎn)F的軌跡可能為:①橢圓②圓③雙曲線的一支④直線⑤拋物線,其中可能的序號(hào)是
 
(寫出所有可能的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式組
x-y+3≥0
kx-y+3≤0
0≤x≤2
表示的平面區(qū)域是一個(gè)直角三角形,則實(shí)數(shù)k的值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案