已知函數(shù)f(x)=x|x-2|.
(Ⅰ)解不等式f(x)<3;
(Ⅱ)設0<a<2,求f(x)在[0,a]上的最大值.

解:(Ⅰ)∵?2≤x<3或x<2,
∴不等式f(x)<3的解集為{x|x<3} (5分)

(Ⅱ)解:
∴f(x)的單調(diào)遞增區(qū)間是(-∞,1]和[2,+∞);單調(diào)遞減區(qū)間是[1,2],(8分)
(1)當0<a≤1時,f(x)是[0,a]上的增函數(shù),此時,f(x)在[0,a]上的最大值是f(a)=a(2-a);
..(11分)
(2)當1<a<2時,f(x)在[0,1]上是增函數(shù),在[1,a]上是減函數(shù),
此時f(x)在[0,a]上的最大值是f(1)=1 (14分)
分析:(Ⅰ)分類討論去掉絕對值,轉(zhuǎn)化為解一元二次不等式組得解集.
(Ⅱ)化簡函數(shù)f(x)的解析式,求出函數(shù)f(x)的單調(diào)區(qū)間及在單調(diào)區(qū)間上的單調(diào)性,
利用函數(shù)在此區(qū)間上的單調(diào)性求出函數(shù)的最大值.
點評:本題考查絕對值不等式的解法,以及利用函數(shù)在某區(qū)間上的單調(diào)性求函數(shù)在此區(qū)間上的最值,體現(xiàn)分類討論的數(shù)學思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案