函數(shù)f(x)=ex+4x-3的零點(diǎn)所在的大致區(qū)間是(  )
A、(-
1
4
,0)
B、(0,
1
4
C、(
1
4
,
1
2
D、(
1
2
,
3
4
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:確定f(0)=1-3=-2<0,f(
1
2
)=
e
-1>0,f(
1
4
)=
4e
-2=
4e
-
416
<0,f(1)=e+4-3=e+1>0,根據(jù)零點(diǎn)存在定理,可得結(jié)論.
解答: 解:∵函數(shù)f(x)=ex+4x-3在R上是增函數(shù),
求解:f(0)=1-3=-2<0,f(
1
2
)=
e
-1>0,f(
1
4
)=
4e
-2=
4e
-
416
<0,f(1)=e+4-3=e+1>0,
∴根據(jù)零點(diǎn)存在定理,可得函數(shù)f(x)=2x+3x-4的零點(diǎn)所在的大致區(qū)間是(
1
4
,
1
2

故選:C.
點(diǎn)評:本題考查零點(diǎn)存在定理,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
-x2+2x+3
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|lgx≤1},B={x|2x≤1},則A∪B等于( 。
A、(0,10]
B、(-∞,0]
C、(0,+∞)
D、(-∞,10]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg
1-x
x+1
(-1<x<1).
(1)判斷f(x)的奇偶性;
(2)證明f(x)是區(qū)間(-1,1)上的單調(diào)減函數(shù);
(3)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=
1
6
,an=
1
2
an-1+
1
2
×
1
3n
(n≥2)
(1)求證:數(shù)列{an+
1
3n
}是等比數(shù)列;
(2)求{an}的通項(xiàng)公式;
(3)設(shè)Sn是{an}的前n項(xiàng)和,求證:Sn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正六邊形ABCDEF中,有下列四個(gè)命題:
AC
+
AF
=2
BC
;②
AD
=2
AB
+2
AF
;
AC
AD
=
AD
AB
;④(
AD
AF
EF
=
AD
AF
EF
).
其中真命題的代號是
 
 
(寫出所有真命題的代號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,AB=AC,側(cè)棱AA1垂直于底面,D、E分別為BC、B1C1的中點(diǎn),F(xiàn)為側(cè)棱BB1上的一點(diǎn).
(Ⅰ)求證:A1E∥平面ADF;
(Ⅱ)求證:平面ADF⊥平面BCC1B1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的邊長為6的正方形ABCD中,點(diǎn)E是DC的中點(diǎn),且
CF
=
2
3
CB
,那么
EF
AE
等于(  )
A、-18B、20
C、12D、-15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(a 
2
3
b 
1
2
)(-3a 
1
2
b 
1
3
)÷(
1
3
a 
1
6
b 
5
6
)a -
8
9
b -
7
9

查看答案和解析>>

同步練習(xí)冊答案