已知二次函數(shù)f(x)滿足條件f(0)=1和f(x+1)-f(x)=2x.
(1)求f(x);
(2)求f(x)在區(qū)間[-1,1]上的最大值和最小值.

(1)f(x)=x2-x+1
(2)f(x)的最小值是f,f(x)的最大值是f(-1)=3.

解析試題分析:(1)設(shè)f(x)=ax2+bx+c,由f(0)=1可知c=1.
而f(x+1)-f(x)=[a(x+1)2+b(x+1)+c]-(ax2+bx+c)=2ax+a+b.
由已知f(x+1)-f(x)=2x,可得2a=2,a+b=0.因而a=1,b=-1.
故f(x)=x2-x+1.
(2)∵f(x)=x2-x+1=2
∈[-1,1].
∴當(dāng)x∈[-1,1]時(shí)f(x)的最小值是f,
f(x)的最大值是f(-1)=3.
考點(diǎn):函數(shù)的最值
點(diǎn)評(píng):主要是考查了函數(shù)的最值的運(yùn)用,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知.
①若函數(shù)f(x)的值域?yàn)镽,求實(shí)數(shù)m的取值范圍;
②若函數(shù)f(x)在區(qū)間(-∞,1-)上是增函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)求函數(shù)的定義域,并判斷的奇偶性;
(2)用定義證明函數(shù)上是增函數(shù);
(3)如果當(dāng)時(shí),函數(shù)的值域是,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

“活水圍網(wǎng)”養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點(diǎn).研究表明:“活水圍網(wǎng)”養(yǎng)魚時(shí),某種魚在一定的條件下,每尾魚的平均生長(zhǎng)速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當(dāng)不超過(guò)4(尾/立方米)時(shí),的值為(千克/年);當(dāng)時(shí),的一次函數(shù);當(dāng)達(dá)到(尾/立方米)時(shí),因缺氧等原因,的值為(千克/年).
(1)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(2)當(dāng)養(yǎng)殖密度為多大時(shí),魚的年生長(zhǎng)量(單位:千克/立方米)可以達(dá)到最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=ax2+2x+c(a、c∈N*)滿足:①f(1)=5;②6<f(2)<11.
(1)求a、c的值;
(2)若對(duì)任意的實(shí)數(shù)x∈,都有f(x)-2mx≤1成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某工廠某種產(chǎn)品的年固定成本為250萬(wàn)元,每生產(chǎn)千件,需另投入成本為,當(dāng)年產(chǎn)量不足80千件時(shí),(萬(wàn)元).當(dāng)年產(chǎn)量不小于80千件時(shí),(萬(wàn)元),每件商品售價(jià)為0.05萬(wàn)元,通過(guò)市場(chǎng)分析,該廠生產(chǎn)的商品能全部售完.
(Ⅰ)寫出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(Ⅱ)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)(為實(shí)數(shù),,),
(Ⅰ)若,且函數(shù)的值域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/ec/24/ec824321244b3975c8c90c0df6fc4502.png" style="vertical-align:middle;" />,求的表達(dá)式;
(Ⅱ)在(Ⅰ)的條件下,當(dāng)時(shí),是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅲ)設(shè),,,且函數(shù)為偶函數(shù),判斷是否大于?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=x2+2ax+3,x∈[-4,6].
(1)當(dāng)a=-2時(shí),求f(x)的最值;
(2)求實(shí)數(shù)a的取值范圍,使y=f(x)在區(qū)間[-4,6]上是單調(diào)函數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某產(chǎn)品在一個(gè)生產(chǎn)周期內(nèi)的總產(chǎn)量為100t,平均分成若干批生產(chǎn)。設(shè)每批生產(chǎn)需要投入固定費(fèi)用75元,而每批生產(chǎn)直接消耗的費(fèi)用與產(chǎn)品數(shù)量x的平方成正比,已知每批生產(chǎn)10t時(shí),直接消耗的費(fèi)用為300元(不包括固定的費(fèi)用)。
(1)若每批產(chǎn)品數(shù)量為20t,求此產(chǎn)品在一個(gè)生產(chǎn)周期的總費(fèi)用(固定費(fèi)用和直接消耗的費(fèi)用)。
(2)設(shè)每批產(chǎn)品數(shù)量為xt,一個(gè)生產(chǎn)周期內(nèi)的總費(fèi)用y元,求y與x的函數(shù)關(guān)系式,并求
出y的最小值。

查看答案和解析>>

同步練習(xí)冊(cè)答案