9.已知雙曲線${x^2}-\frac{y^2}{b^2}=1\;\;(b>0)$的離心率為2,則b=$\sqrt{3}$.

分析 根據(jù)題意,由雙曲線的方程可得c的值,進而由雙曲線的離心率公式可得$\frac{\sqrt{1+^{2}}}{1}$=2,解可得b的值,即可得答案.

解答 解:根據(jù)題意,雙曲線的方程為${x^2}-\frac{y^2}{b^2}=1\;\;(b>0)$,
其中a=1,則c=$\sqrt{1+^{2}}$,
又由該雙曲線的離心率e=2,則有$\frac{c}{a}$=$\frac{\sqrt{1+^{2}}}{1}$=2,
又由b>0,
解可得b=$\sqrt{3}$;
故答案為:$\sqrt{3}$.

點評 本題考查雙曲線的標準方程,關鍵是掌握雙曲線的離心率公式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.已知f(x)=2cosx($\sqrt{3}$sinx+cosx)-1
(1)求函數(shù)f(x)的單調遞減區(qū)間;
(2)若y=f(x+φ)關于直線x=$\frac{π}{3}$對稱,求|φ|的最小值;
(3)當x∈[0,$\frac{π}{2}$]時,若方程|f(x)|-m=0有4個不同的實數(shù)解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.函數(shù)f(x)=(x-3)ex的單調遞增區(qū)間是( 。
A.(0,3)B.(1,4)C.(2,+∞)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,在直三棱柱ABC-A1B1C1中,AB⊥側面BB1C1C,AB1與A1B相交于點D,E是CC1上的點,且DE∥平面ABC,BC=1,BB1=2.
(Ⅰ)證明:B1E⊥平面ABE
(Ⅱ)若異面直線AB和A1C1所成角的正切值為$\frac{\sqrt{2}}{2}$,求二面角A-B1E-A1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.下列函數(shù)中,既是偶函數(shù)又有零點的是( 。
A.$y={x^{\frac{1}{2}}}$B.y=tanxC.y=ex+e-xD.y=ln|x|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知sin(π-α)>0,且cos(π+α)>0,則角α所在的象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.如圖,在△ABC中,D為AB的中點,E為CD的中點,設$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,以向量$\overrightarrow{a}$,$\overrightarrow$為基底,則向量$\overrightarrow{AE}$=( 。
A.$\frac{1}{2}$$\overrightarrow{a}$+$\overrightarrow$B.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$C.$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$D.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.一個暗箱中有大小相同的4只求,其中有k(k∈N)只白球,其余的為黑球,每次從中取出一只球,取到白球得1分,取到黑球得2分,甲從暗箱中有放回地依次取出2只球,而乙球是從暗箱中一次性取出2只球.
(1)當k=2時,分別寫出甲、乙總得分ξ、η的分布列.
(2)若要使甲總得分比乙總得分高的概率達到最大,則k的值為多少.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,已知EA⊥平面ABC,F(xiàn)C⊥平面ABC,△ABC是正三角形,D是BC的中點,且AB=AE=1,CF=2.
(1)求證:AD⊥平面BCF;
(2)求直線DF與平面BEF所成角的正弦值.

查看答案和解析>>

同步練習冊答案