【題目】2021年我省將實(shí)施新高考,新高考“依據(jù)統(tǒng)一高考成績(jī)、高中學(xué)業(yè)水平考試成績(jī),參考高中學(xué)生綜合素質(zhì)評(píng)價(jià)信息”進(jìn)行人才選拔。我校2018級(jí)高一年級(jí)一個(gè)學(xué)習(xí)興趣小組進(jìn)行社會(huì)實(shí)踐活動(dòng),決定對(duì)某商場(chǎng)銷售的商品A進(jìn)行市場(chǎng)銷售量調(diào)研,通過(guò)對(duì)該商品一個(gè)階段的調(diào)研得知,發(fā)現(xiàn)該商品每日的銷售量(單位:百件)與銷售價(jià)格(元/件)近似滿足關(guān)系式,其中為常數(shù)已知銷售價(jià)格為3元/件時(shí),每日可售出該商品10百件。

(1)求函數(shù)的解析式;

(2)若該商品A的成本為2元/件,根據(jù)調(diào)研結(jié)果請(qǐng)你試確定該商品銷售價(jià)格的值,使該商場(chǎng)每日銷售該商品所獲得的利潤(rùn)(單位:百元)最大。

【答案】(1);(2)當(dāng)銷售價(jià)格為3元/件時(shí),商場(chǎng)每日銷售該商品所獲得的利潤(rùn)最大.

【解析】

(1)由題意將(3,10)代入函數(shù)解析式,建立方程,即可求出gx)的解析式;

(2)商場(chǎng)每日銷售該商品所獲得的利潤(rùn)=每日的銷售量×銷售該商品的單利潤(rùn),可得日銷售量的利潤(rùn)函數(shù)為關(guān)于x的三次多項(xiàng)式函數(shù),再用求導(dǎo)數(shù)的方法討論函數(shù)的單調(diào)性,得出函數(shù)的極大值點(diǎn),從而得出最大值對(duì)應(yīng)的x值.

(1)由題意,102(3-5)2,解得a=2,故gx2(x﹣5)2(2<x<5);

( 2)商場(chǎng)每日銷售該商品所獲得的利潤(rùn)為yhx)=(x﹣2)gx)=2+2(x﹣5)2x﹣2)(2<x<5),

y′=4(x-5)(x-2)+ 2(x﹣5)2=2(3x-9)(x﹣5).

列表得x,y,y′的變化情況:

x

(2,3)

3

(3,5)

y'

+

0

y

單調(diào)遞增

極大值10

單調(diào)遞減

由上表可得,x=3是函數(shù)hx)在區(qū)間(2,5)內(nèi)的極大值點(diǎn),也是最大值點(diǎn),此時(shí)y=10

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,上頂點(diǎn)為,若直線的斜率為1,且與橢圓的另一個(gè)交點(diǎn)為, 的周長(zhǎng)為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)點(diǎn)的直線(直線的斜率不為1)與橢圓交于兩點(diǎn),點(diǎn)在點(diǎn)的上方,若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20名學(xué)生某次數(shù)學(xué)考試成績(jī)(單位:分)的頻率分布直方圖如下:

(1)求頻率直方圖中a的值;

(2)分別求出成績(jī)落在[50,60)與[60,70)中的學(xué)生人數(shù);

(3)從成績(jī)?cè)赱50,70)的學(xué)生中人選2人,求這2人的成績(jī)都在[60,70)中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線 的兩條漸近線與拋物線的準(zhǔn)線分別交于,兩點(diǎn).若雙曲線的離心率為,的面積為,為坐標(biāo)原點(diǎn),則拋物線的焦點(diǎn)坐標(biāo)為 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知時(shí),函數(shù)有極值

(1)求實(shí)數(shù)的值;

(2)若方程有3個(gè)實(shí)數(shù)根,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于下列命題:

①若是第一象限角,且,則;

②函數(shù)是偶函數(shù);

③函數(shù)的一個(gè)對(duì)稱中心是;

④函數(shù)上是增函數(shù),

所有正確命題的序號(hào)是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是函數(shù)的切線,則的最小值為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為偶函數(shù),且函數(shù)的圖象的兩相鄰對(duì)稱軸間的距離為.

1)求的值;

2)將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的4倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求函數(shù)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是橢圓上任一點(diǎn),點(diǎn)到直線的距離為,到點(diǎn)的距離為,且.直線與橢圓交于不同兩點(diǎn)都在軸上方),且.

(1)求橢圓的方程;

(2)當(dāng)為橢圓與軸正半軸的交點(diǎn)時(shí),求直線方程;

(3)對(duì)于動(dòng)直線,是否存在一個(gè)定點(diǎn),無(wú)論如何變化,直線總經(jīng)過(guò)此定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案