【題目】(1)已知函數(shù).求的極大值和極小值.
(2)已知是實數(shù),1和-1是函數(shù)的兩個極值點.
①求和的值;
②設(shè)函數(shù)的導(dǎo)函數(shù),求的極值點.
【答案】(1)的極大值為和,的極小值為;(2)①,;②的極小值點為,無極大值點.
【解析】
試題分析:(1)先求函數(shù)的導(dǎo)函數(shù),列表判斷出函數(shù)的單調(diào)區(qū)間,可得函數(shù)的極大值和極小值;(2)①根據(jù)和是函數(shù)的兩個極值點,則,建立方程組,解之即可求出與的值先求出的解析式;②求出的根,判定函數(shù)的單調(diào)性,從而函數(shù)的極值點.
試題解析:(1)函數(shù)的定義域為,,
當(dāng)變化時,、的符號變化情況如下:
+ | 0 | - | 0 | + | 0 | - | |
單調(diào)遞增 | 極大值 | 單調(diào)遞減 | 極小值 | 單調(diào)遞增 | 極大值 | 單調(diào)遞減 |
∴的極大值為和,的極小值為.
(2)①由題設(shè)知,且,,解得,.
②由①知.因為,所以的根為,,于是函數(shù)的極值點只可能是或.
當(dāng)時,;當(dāng)時,,故是的極小值點.
當(dāng)或時,,故不是的極值點.
所以的極小值點為,無極大值點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于樣本頻率分布折線圖與總體密度曲線的關(guān)系,下列說法中正確的是( )
A. 頻率分布折線圖與總體密度曲線無關(guān)
B. 頻率分布折線圖就是總體密度曲線
C. 樣本容量很大的頻率分布折線圖就是總體密度曲線
D. 如果樣本容量無限增大、分組的組距無限減小,那么頻率分布折線圖就會無限接近總體密度曲線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某運動員每次投籃命中的概率都為40%.現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器算出0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):
907 ,966 ,191,925 ,271 ,932 ,812 ,458 ,569 ,683 ,451 ,257 ,393 ,027 ,556 ,488 ,730 ,113 ,533 ,989
據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為
A.0.35 B.0.25 C.0.20 D.0.15
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面說法中,能稱為算法的是( )
A. 巧婦難為無米之炊 B. 炒菜需要洗菜、切菜、刷鍋、炒菜這些步驟
C. 數(shù)學(xué)題真有趣 D. 物理與數(shù)學(xué)是密不可分的
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于算法的敘述中正確的是( )
A. —個算法必須能解決一類問題 B. 求解某個問題的算法是唯一的
C. 算法不能重復(fù)使用 D. 算法的過程可以是無限的
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若方程 所表示的曲線為C,給出下列四個命題:
①若C為橢圓,則;
②若C為雙曲線,則或;
③曲線C不可能是圓;
④若,曲線C為橢圓,且焦點坐標為;
⑤若,曲線C為雙曲線,且虛半軸長為.
其中真命題的序號為____________.(把所有正確命題的序號都填在橫線上)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com