9.若a>b,c>d,則下面不等式中成立的一個(gè)是(  )
A.a+d>b+cB.ac>bdC.ac2>bc2D.d-a<c-b

分析 本題是選擇題,可采用逐一檢驗(yàn),利用特殊值法進(jìn)行檢驗(yàn),很快問題得以解決.

解答 解:∵a>b,c>d,
∴設(shè)a=1,b=-1,c=-2,d=-5,
選項(xiàng)A,1+(-5)>-1+(-2),不成立,
選項(xiàng)B,1×(-2)>(-1)×(-5),不成立,
取選項(xiàng)C,c=0時(shí),不成立,
故選:D.

點(diǎn)評(píng) 本題主要考查了基本不等式,基本不等式在考綱中是C級(jí)要求,本題屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.對(duì)于問題:“已知關(guān)于x的不等式ax2+bx+c>0的解集為(-1,2),解關(guān)于x的不等式ax2-bx+c>0”,給出如下一種解法:由ax2+bx+c>0的解集為(-1,2),得a(-x)2+b(-x)+c>0的解集為(-2,1),即關(guān)于x的不等式ax2-bx+c>0的解集為(-2,1).
參考上述解法,若關(guān)于x的不等式$\frac{k}{x+a}$+$\frac{x+b}{x+c}$<0的解集為(-2,-$\frac{1}{3}$)∪($\frac{1}{2}$,1),則關(guān)于x的不等式$\frac{kx}{ax+1}$+$\frac{bx+1}{cx+1}$<0的解集為(-3,$-\frac{1}{2}$)∪(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若x,y滿足$\left\{\begin{array}{l}{(x-y)(x+y-1)≥0}\\{0≤x≤1}\end{array}\right.$,則2x+y的取值范圍為[0,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在△ABC中,點(diǎn)D在邊BC上,BD=2,BA=3,AD=$\sqrt{7}$,∠C=45°.
(1)求∠B的大小;
(2)求△ABD的面積及邊AC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列四條直線,傾斜角最大的是( 。
A.y=-x+1B.y=x+1C.y=2x+1D.x=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若數(shù)列{an}的前n項(xiàng)和Sn=2an-1,則S6=63.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=sin2x+cos2x
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的最大值及f(x)取最大值時(shí)x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若x,y滿足$\left\{\begin{array}{l}x+y-1≥0\\ x-y-1≤0\\ x-3y+3≥0\end{array}\right.$,則z=x+2y的最小值為( 。
A.8B.7C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列命題中正確的個(gè)數(shù)是(  )
(1)若a,b,c成等差數(shù)列,則a2,b2,c2一定成等差數(shù)列;
(2)若a,b,c成等差數(shù)列,則2a,2b,2c可能成等差數(shù)列;
(3)若a,b,c成等差數(shù)列,則ka+2,kb+2,kc+2一定成等差數(shù)列;
(4)若a,b,c成等差數(shù)列,則$\frac{1}{a}$,$\frac{1}$,$\frac{1}{c}$可能成等差數(shù)列.
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案