從4名男生和3名女生中選出4人參加某個座談會,若這4人中必須既有男生又有女生,則不同的選法有      種。

 

【答案】

34

【解析】

試題分析:∵7人中任選4人共種選法,去掉只有男生的選法

就可得有既有男生,又有女生的選=34.

考點:排列、組合及簡單計數(shù)問題.

點評:排列與組合問題要區(qū)分開,若題目要求元素的順序則是排列問題,排列問題要做到不重不漏,有些題

目帶有一定的約束條件,解題時要先考慮有限制條件的元素.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

10、從4名男生和3名女生中選出4人參加某個座談會,若這4人中必須既有男生又有女生,則不同的選法種數(shù)共有
34
.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從4名男生和3名女生中選出4人擔(dān)任奧運志愿者,若選出的4人中既有男生又有女生,則不同的選法共有
34
34
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從4名男生和3名女生中選出3人,分別從事三項不同的工作,若這3人中至少有1名女生,則選派方案共有
186
186
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•漳州模擬)從4名男生和3名女生中選出4人參加市中學(xué)生知識競賽活動,若這4人中必須既有男生又有女生,不同的選法共有
34
34
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從4名男生和3名女生中選出3人參加學(xué)生座談會,若這3人中既有男生又有女生,則不同的選法共有( 。

查看答案和解析>>

同步練習(xí)冊答案