分析 (1)由f(x)≥0等價于|x+3|≥|x-1|即(x+3)2≥(x-1)2,即可解不等式f(x)≥0;
(2)要使f(x)+2|x-1|≥m對任意的實數x均成立,則[f(x)+2|x-1|]min≥m即可.
解答 解:(1)由f(x)≥0等價于|x+3|≥|x-1|即(x+3)2≥(x-1)2
化簡得:8x≥-8,解得:x≥-1,即原不等式的解集為:{x|x≥-1}
(2)∵f(x)+2|x-1|=|x+3|+|x-1|≥4,
要使f(x)+2|x-1|≥m對任意的實數x均成立,則[f(x)+2|x-1|]min≥m
所以m≤4;
點評 本題考查了絕對值不等式的解法和其幾何意義的運用,考查絕對值不等式,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
周需求量n | 18 | 19 | 20 | 21 | 22 |
頻數 | 1 | 2 | 3 | 3 | 1 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com