3-i
1+i
=a+bi(a,b∈R),則
b
a
=( 。
A、-4B、-2C、-1D、2
考點(diǎn):復(fù)數(shù)代數(shù)形式的混合運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:由復(fù)數(shù)代數(shù)形式的除法運(yùn)算化簡等式左邊,然后由復(fù)數(shù)相等的條件求解a,b的值,則
b
a
可求.
解答: 解:∵
3-i
1+i
=
(3-i)(1-i)
(1+i)(1-i)
=
2-4i
2
=1-2i
,
3-i
1+i
=a+bi,得1-2i=a+bi,
a=1
b=-2
,
b
a
=-2.
故選:B.
點(diǎn)評:本題考查了復(fù)數(shù)代數(shù)形式的除法運(yùn)算,考查了復(fù)數(shù)相等的條件,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若a>b>0,則下列不等式成立的是( 。
A、a+b<2
ab
B、
a
b
C、log
1
2
a
log
1
2
b
D、0.2a>0.2b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|(x-1)(x-5)<0},B={x|log2x≤2},則集合A∩B=( 。
A、{x|0<x<4}
B、{x|0<x<5}
C、{x|1<x≤4}
D、{x|4≤x<5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z滿足
1+z
i
=1-z,則z的虛部為(  )
A、-1B、-iC、1D、i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2
6
sinxcosx+
2
cos2x的最小正周期和振幅分別是( 。
A、π,
26
B、π,
2
C、2π,1
D、π,2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c∈R,函數(shù)f(x)=ax2+bx+c.若f(0)=f(-4)<f(1),則(  )
A、a>0,4a-b=0
B、a<0,4a-b=0
C、a>0,2a-b=0
D、a<0,2a-b=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}和等比數(shù)列{bn}滿足:|a1|=|a5|,b1=a4,b2=a5,b3=a6+1.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)cn=an+3•bn+1,Sn=c1+c2+…+cn,不等式(m-n)•bn+2+Sn<0對于任意的n∈N*都成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ex(x2+mx+1-2m),其中m∈R.
(Ⅰ)當(dāng)m=1時,求函數(shù)y=f(x)單調(diào)遞增區(qū)間;
(Ⅱ)求證:對任意m∈R,函數(shù)y=f(x)的圖象在點(diǎn)(0,f(0))處的切線恒過定點(diǎn);
(Ⅲ)是否存在實(shí)數(shù)m的值,使得y=f(x)在(-∞,+∞)上有最大值或最小值,若存在,求出實(shí)數(shù)m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某海軍編隊將進(jìn)行一次編隊配置科學(xué)試驗(yàn),要求2艘攻擊型核潛艇一前一后,3艘驅(qū)逐艦和3艘護(hù)衛(wèi)艦分列左右,每側(cè)3艘,同側(cè)不能都是同種艦艇,則艦艇分配方案的方法數(shù)為
 

查看答案和解析>>

同步練習(xí)冊答案