解答:
(Ⅰ)解:當(dāng)m=1時,f(x)=e
x(x
2+x-1),f'(x)=e
x(x
2+3x)
令f′(x)>0,得x>0或x<-3
∴函數(shù)y=f(x)的單調(diào)遞增區(qū)間為(-∞,-3),(0,+∞)…(4分)
(Ⅱ)解法1:f'(x)=e
x[x
2+(m+2)x+(1-m)]f(0)=1-m,f'(0)=1-2m
函數(shù)y=f(x)的圖象在點(0,f(0))處的切線方程為y-(1-2m)=(1-m)(x-0)
即(m-1)x+y+2m-1=0
令m=0,則有x-y+1=0…①
令m=1,則有y=-1…②
由①②,解得
經(jīng)檢驗,點(-2,-1)滿足直線的方程(m-1)x+y+2m-1=0
∴函數(shù)y=f(x)的圖象在點(0,f(0))處的切線方程(m-1)x+y+2m-1=0經(jīng)過定點(-2,-1).…(9分)
解法2:f'(x)=e
x[x
2+(m+2)x+(1-m)]f(0)=1-m,f'(0)=1-2m
∴函數(shù)y=f(x)的圖象在點(0,f(0))處的切線方程為y-(1-2m)=(1-m)(x-0)
即(m-1)x+y+2m-1=0
方程(m-1)x+y+2m-1=0可化為m(x+2)-(x-y+1)=0
當(dāng)
即
時,對任意m∈R,(m-1)x+y+2m-1=0恒成立
∴函數(shù)y=f(x)的圖象在點(0,f(0))處的切線方程(m-1)x+y+2m-1=0經(jīng)過定點(-2,-1).…(9分)
(Ⅲ)解法1:f'(x)=e
x[x
2+(m+2)x+(1-m)]
令
y1=x2+mx+1-2m,
y2=x2+(m+2)x+(1-m),
△1=m2-4(1-2m)=m2+8m-4,
△2=(m+2)2-4(1-m)=m2+8m①當(dāng)△
2≤0即-8≤m≤0時,y=x
2+(m+2)x+(1-m)≥0
∴f'(x)=e
x[x
2+(m+2)x+(1-m)]≥0
∴y=f(x)在(-∞,+∞)上單調(diào)遞增
∴y=f(x)在(-∞,+∞)上不存在最大值和最小值.…(11分)
②當(dāng)△
2>0即m<-8或m>0時,設(shè)方程x
2+(m+2)x+(1-m)=0的兩根為x
1,x
2f'(x),f(x)隨x的變化情況如下表:
x |
(-∞,x1) |
x1 |
(x1,x2) |
x2 |
(x2,+∞) |
f'(x) |
+ |
0 |
- |
0 |
+ |
f(x) |
遞增 |
極大值 |
遞減 |
極小值 |
遞增 |
當(dāng)x→-∞時,f(x)>0,f(x)→0;當(dāng)x→+∞時,f(x)→+∞
∴要使y=f(x)在(-∞,+∞)上有最大值或最小值,只需滿足f(x
2)≤0即y
1≤0有解
∴
△1=m2-4(1-2m)=m2+8m-4≥0,解得
m≤-4-2或
m≥-4+2綜上可得,
m≤-4-2或
m≥-4+2…(14分)
解法2:f'(x)=e
x[x
2+(m+2)x+(1-m)]
令
y1=x2+mx+1-2m,
y2=x2+(m+2)x+(1-m),
△1=m2-4(1-2m)=m2+8m-4,
△2=(m+2)2-4(1-m)=m2+8m①當(dāng)△
2≤0即-8≤m≤0時,y=x
2+(m+2)x+(1-m)≥0
∴f'(x)=e
x[x
2+(m+2)x+(1-m)]≥0
∴y=f(x)在(-∞,+∞)上單調(diào)遞增
∴y=f(x)在(-∞,+∞)上不存在最大值和最小值.…(11分)
②當(dāng)△
2>0即m<-8或m>0時,設(shè)方程x
2+(m+2)x+(1-m)=0的兩根為x
1,x
2x1=,x2=f'(x),f(x)隨x的變化情況如下表:
x |
(-∞,x1) |
x1 |
(x1,x2) |
x2 |
(x2,+∞) |
f'(x) |
+ |
0 |
- |
0 |
+ |
f(x) |
遞增 |
極大值 |
遞減 |
極小值 |
遞增 |
當(dāng)x→-∞時,f(x)>0,f(x)→0;當(dāng)x→+∞時,f(x)→+∞
∴要使y=f(x)在(-∞,+∞)上有最大值或最小值,只需滿足f(x
2)≤0
f(x2)=x22+mx2+1-2m=[x22+(m+2)x2+(1-m)]-2x2-m=-m-2x2≤0∴
-2×-m=m+2--m≤0化簡,得m
2+8m-4≥0
解得
m≤-4-2或
m≥-4+2綜上可得,
m≤-4-2或
m≥-4+2…(14分)