17.已知點A(0,1),B(3,2),向量$\overrightarrow{CA}=(4,3)$,則向量$\overrightarrow{BC}$=( 。
A.(-7,-4)B.(7,4)C.(-1,4)D.(1,4)

分析 利用向量$\overrightarrow{BC}$=$\overrightarrow{BA}+\overrightarrow{AC}$即可得出.

解答 解:向量$\overrightarrow{BC}$=$\overrightarrow{BA}+\overrightarrow{AC}$=(-3,-1)+(-4,-3)=(-7,-4).
故選:A.

點評 本題考查了向量三角形法則及其坐標運算性質,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.過雙曲線$\frac{x^2}{9}-\frac{y^2}{16}=1$的左焦點F引圓x2+y2=9的切線,切點為T,延長FT交雙曲線右支于點P,若M為線段FP的中點,O為坐標原點,則|MO|-|MT|為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.十件有編號的零件,安排4個工人加工,每人分別加工2、2、3、3件,則安排方法有151200種(用數(shù)字表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.在用反證法證明命題“過一點只有一條直線與已知平面垂直”時,應假設( 。
A.過兩點有一條直線與已知平面垂直
B.過一點有一條直線與已知平面平行
C.過一點有兩條直線與已知平面垂直
D.過一點有一條直線與已知平面不垂直

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.《數(shù)學萬花筒》第7頁中談到了著名的“四色定理”.問題起源于1852年的倫敦大學學院畢業(yè)生弗朗西斯•加斯里.他給自己的弟弟弗萊德里克寫的信中提到:“可以使用四種(或更少)顏色為平面上畫出的每張地圖著色,使任何相鄰的兩個地區(qū)的邊界線具有不同的顏色嗎?”回答他這個問題用了124年,但簡單的圖形我們能用逐一列舉的方法解決.若用紅、黃、藍、綠四種顏色給右邊的地圖著色,假定區(qū)域①已著紅色,區(qū)域②已著黃色,則剩余的區(qū)域③④共有2種著色方法.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設等差數(shù)列{an}的前n項和為Sn,且滿足a1008+a1009>0,a1009<0,則數(shù)列$\left\{{\frac{1}{a_n}}\right\}$中值最小的項是( 。
A.第1008 項B.第1009 項C.第2016項D.第2017項

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知$\overrightarrow a=({1,t})$,$\overrightarrow b=(-5,\;2\;)$且$\overrightarrow a•\overrightarrow b=1$,求當k為何值時,
(1)k$\overrightarrow a+\overrightarrow b$與$\overrightarrow a-3\overrightarrow b$垂直;
(2)k$\overrightarrow a+\overrightarrow b$與$\overrightarrow a-3\overrightarrow b$平行.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.用數(shù)歸納法證明“當n為正奇數(shù)時,xn+yn能被x+y整除”,在第二步時,正確的設法是( 。
A.設n=k(k∈N*)正確,再推n=k+1時正確
B.設n=k(k∈N*)正確,再推n=2k+1時正確
C.設n=k(k∈N*)正確,再推n=k+2時正確
D.設n=2k+1(k∈N*)正確,再推n=2k-1時正確

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知x>$\frac{1}{2}$,則函數(shù)y=$\frac{{x}^{2}+x+1}{2x-1}$的最小值為$\frac{\sqrt{7}}{2}+1$.

查看答案和解析>>

同步練習冊答案