函數(shù)f(x)=mx2-x+1有兩個零點分別屬于區(qū)間(0,2),(2,3),則m的范圍為
 
考點:函數(shù)零點的判定定理
專題:函數(shù)的性質及應用
分析:根據(jù)零點的存在性定理,由f(x)=mx2-x+1在(0,2)上有一個零點列出f(0)f(2)<0;在(2,3)<0上有一個零點列出f(2)f(3)<0,列出不等式組求出m范圍.
解答: 解:∵f(x)=mx2-x+1有兩個零點分別屬于區(qū)間(0,2),(2,3),
f(0)•f(2)<0
f(2)•f(3)<0

4m-1<0
(4m-1)(9m-2)<0

解得
2
9
<m<
1
4
,
則m的范圍為(
2
9
,
1
4
)
點評:本題考查函數(shù)零點的判定定理,屬于一道基礎題,關鍵是由定理列出不等式組.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知lgx+lgy=1,求:
(1)
1
x2
+
1
y2
的最小值;
(2)
1
x
+
1
y
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,海上有A,B兩個小島相距10km,船O將保持觀望A島和B島所成的視角為60°,現(xiàn)從船O上派下一只小艇沿BO方向駛至C處進行作業(yè),且OC=BO.設AC=xkm.
(1)若AO=
10
3
3
km,求出x的取值;
(2)用x分別表示OA2+OB2和OA•OB,并求出x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的中心為O,右焦點為F、右頂點為A,直線x=
a2
c
與x軸的交點為K,則
|FA|
|OK|
的最大值為( 。
A、
1
2
B、
1
3
C、
1
4
D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,點D在BC邊上,且
CD
=2
DB
,
CD
=r
AB
+s
AC
,則r+s=( 。
A、
2
3
B、
4
3
C、1
D、0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算定積分:
4
1
1
x
dx=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(
1
2
x+θ)-
3
cos(
1
2
x+θ)(|θ|<
π
2
)的圖象關于y中對稱,則y=f(x)在下列哪個區(qū)間上是減函數(shù)( 。
A、(0,
π
2
B、(
π
2
,π)
C、(-
π
2
,-
π
4
D、(
2
,2π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列哪組中的兩個函數(shù)是相等函數(shù)(  )
A、y=x,y=
5x5
B、y=
x-1
x+1
,y=
x2-1
C、y=1,y=
x
x
D、y=|x|,y=(
x
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的中心為O,左焦點為F,P是雙曲線上的一點
OP
PF
=0且4
OP
OF
=
OF
2
,則該雙曲線的離心率是( 。
A、
10
-
2
2
B、
10
+
2
2
C、
7
-
3
D、
7
+
3

查看答案和解析>>

同步練習冊答案