已知函數(shù)
(1)若x=2為的極值點(diǎn),求實(shí)數(shù)a的值;
(2)若上為增函數(shù),求實(shí)數(shù)a的取值范圍.

(1);(2)

解析試題分析:(1)通過(guò)求導(dǎo)可得.又因?yàn)閤=2是極值點(diǎn).即可求得.
(2)通過(guò)對(duì)對(duì)數(shù)的定義域可得符合題意的不等式.在上恒成立.所以轉(zhuǎn)化為研究二次函數(shù)的最值問(wèn)題.通過(guò)對(duì)稱(chēng)軸研究函數(shù)的單調(diào)性即可得到結(jié)論.本題的的關(guān)鍵是對(duì)含參的函數(shù)的最值的討論.以二次的形式為背景緊扣對(duì)稱(chēng)軸這個(gè)知識(shí)點(diǎn).
試題解析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/39/0/cu1uf2.png" style="vertical-align:middle;" />.因?yàn)閤=2為f(x)的極值點(diǎn).所以.解得.又當(dāng)時(shí).從而x=2為f(x)的極值點(diǎn)成立.
(2)因?yàn)閒(x)在區(qū)間上為增函數(shù).所以.在區(qū)間上恒成立. ①當(dāng)時(shí). 上恒成立.所以f(x)在上為增函數(shù).故符合題意.②當(dāng)時(shí).由函數(shù)f(x)的定義域可知,必須有時(shí)恒成立.故只能.所以在區(qū)間上恒成立.令g(x)= .其對(duì)稱(chēng)軸為.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8a/3/btsij2.png" style="vertical-align:middle;" />.所以<1.從而g(x) 上恒成立.只需要g(3) 即可.由g(3)= .解得:.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8a/3/btsij2.png" style="vertical-align:middle;" />.所以.綜上所述. 的取值范圍為.
考點(diǎn):1.對(duì)數(shù)函數(shù)的知識(shí)點(diǎn).2.最值問(wèn)題.3.含參的討論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f1/c/1nfj53.png" style="vertical-align:middle;" />,且的圖象連續(xù)不間斷. 若函數(shù)滿足:對(duì)于給定的),存在,使得,則稱(chēng)具有性質(zhì).
(1)已知函數(shù),,判斷是否具有性質(zhì),并說(shuō)明理由;
(2)已知函數(shù) 若具有性質(zhì),求的最大值;
(3)若函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f1/c/1nfj53.png" style="vertical-align:middle;" />,且的圖象連續(xù)不間斷,又滿足
求證:對(duì)任意,函數(shù)具有性質(zhì).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

“地溝油”嚴(yán)重危害了人民群眾的身體健康,某企業(yè)在政府部門(mén)的支持下,進(jìn)行技術(shù)攻關(guān),新上了一種從“食品殘?jiān)敝刑釤挸錾锊裼偷捻?xiàng)目,經(jīng)測(cè)算,該項(xiàng)目月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可以近似的表示為:

且每處理一噸“食品殘?jiān),可得到能利用的生物柴油價(jià)值為200元,若該項(xiàng)目不獲利,政府將補(bǔ)貼.
(1)當(dāng)x∈[200,300]時(shí),判斷該項(xiàng)目能否獲利?如果獲利,求出最大利潤(rùn);如果不獲利,則政府每月至少需要補(bǔ)貼多少元才能使該項(xiàng)目不虧損;
(2)該項(xiàng)目每月處理量為多少?lài)崟r(shí),才能使每噸的平均處理成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

對(duì)于函數(shù),若存在實(shí)數(shù)對(duì)(),使得等式對(duì)定義域中的每一個(gè)都成立,則稱(chēng)函數(shù)是“()型函數(shù)”.
(1) 判斷函數(shù)是否為“()型函數(shù)”,并說(shuō)明理由;
(2) 若函數(shù)是“()型函數(shù)”,求出滿足條件的一組實(shí)數(shù)對(duì);
(3)已知函數(shù)是“()型函數(shù)”,對(duì)應(yīng)的實(shí)數(shù)對(duì)為(1,4).當(dāng) 時(shí),,若當(dāng)時(shí),都有,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn),點(diǎn)在曲線:上.
(1)若點(diǎn)在第一象限內(nèi),且,求點(diǎn)的坐標(biāo);
(2)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)的導(dǎo)函數(shù)的圖像與直線平行,且處取得極小值.設(shè).
(1)若曲線上的點(diǎn)到點(diǎn)的距離的最小值為,求的值;
(2)如何取值時(shí),函數(shù)存在零點(diǎn),并求出零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

對(duì)定義在上,并且同時(shí)滿足以下兩個(gè)條件的函數(shù)稱(chēng)為函數(shù)。
①對(duì)任意的,總有;
②當(dāng)時(shí),總有成立。
已知函數(shù)是定義在上的函數(shù)。
(1)試問(wèn)函數(shù)是否為函數(shù)?并說(shuō)明理由;
(2)若函數(shù)函數(shù),求實(shí)數(shù)的值;
(3)在(2)的條件下,討論方程解的個(gè)數(shù)情況。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)是常數(shù)且
(1)若函數(shù)的一個(gè)零點(diǎn)是1,求的值;
(2)求上的最小值
(3)記,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),,且的解集為.
(Ⅰ)求的值;
(Ⅱ)若,且,求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案