如圖,在四棱錐中,,,,平面底面,.和分別是和的中點,求證:
(Ⅰ)底面;
(Ⅱ)平面;
(Ⅲ)平面平面.
把平面與平面垂直轉(zhuǎn)化為直線和平面垂直是常見的轉(zhuǎn)化.要證直線和平面垂直,依據(jù)相關(guān)判定定理轉(zhuǎn)化為證明直線和直線垂直.要證直線和平面平行,可以利用直線和平面平行的判定定理完成。證明平面與平面垂直,需要在一個平面內(nèi)找到一條和另一個平面垂直的直線,依據(jù)平面與平面垂直的判定定理。
【解析】(Ⅰ)因為平面底面,且垂直于這兩個平面的交線,
所以底面.
(Ⅱ)因為,,是的中點,
所以,且.
所以為平行四邊形.
所以,.
又因為平面,平面,
所以平面.
(Ⅲ)因為,并且為平行四邊形,
所以,.
由(Ⅰ)知底面,
所以,
所以平面.
所以.
因為和分別是和的中點,
所以.
所以.
所以平面.
所以平面平面.
【考點定位】本題考查了直線和平面平行、垂直的判定定理,平面與平面垂直的判定定理和性質(zhì)定理,考查推理論證能力.
科目:高中數(shù)學 來源: 題型:
如圖,在四棱錐中,底面是矩形,平面,,.以的中點為球心、為直徑的球面交于點.
(1)求證:平面⊥平面;
(2)求直線與平面所成的角;w.w.w.k.s.5.u.c.o.m
(3)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆四川省成都高新區(qū)高三10月統(tǒng)一檢測文科數(shù)學試卷(解析版) 題型:解答題
如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,E是PC的中點.
(Ⅰ)證明 平面EDB;
(Ⅱ)求EB與底面ABCD所成的角的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆吉林省白山市高三摸底考試理科數(shù)學試卷(解析版) 題型:解答題
如圖,在四棱錐中,底面為菱形,,為的中點。
(1)若,求證:平面;
(2)點在線段上,,試確定的值,使;
查看答案和解析>>
科目:高中數(shù)學 來源:大連二十三中學2011學年度高一年級期末測試試卷數(shù)學 題型:解答題
(12分)如圖,在四棱錐中,底面為直角梯形,,,平面⊥底面,為AD的中點,是棱上的點,,.(1)若點是棱的中點,求證:
// 平面;(2)求證:平面⊥平面。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com