已知函數(shù)f(x)=
x2+a
x+1
(其中a∈R).
(Ⅰ)若函數(shù)f(x)在點(1,f(1))處的切線為y=
1
2
x+b
,求實數(shù)a,b的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.
分析:(I)欲求實數(shù)a、b的值,利用在x=1處的切線方程,只須求出其斜率的值即可,故先利用導(dǎo)數(shù)求出在x=1處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率.從而問題解決.
(II)先求導(dǎo)數(shù)fˊ(x)然后在函數(shù)的定義域內(nèi)解不等式fˊ(x)>0和fˊ(x)<0,fˊ(x)>0的區(qū)間為單調(diào)增區(qū)間,fˊ(x)<0的區(qū)間為單調(diào)減區(qū)間.
解答:解:由f(x)=
x2+a
x+1
,可得f′(x)=
x2+2x-a
(x+1)2
.….(2分)
(Ⅰ)因為函數(shù)f(x)在點(1,f(1))處的切線為y=
1
2
x+b
,得:
f′(1)=
1
2
f(1)=
1
2
+b
….(4分)
解得 
a=1
b=
1
2
….(5分)
(Ⅱ)令f'(x)>0,得x2+2x-a>0…①….(6分)
當(dāng)△=4+4a≤0,即a≤-1時,不等式①在定義域內(nèi)恒成立,所以此時函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-1)和(-1,+∞).….(8分)
當(dāng)△=4+4a>0,即a>-1時,不等式①的解為x>-1+
1+a
x<-1-
1+a
,
….(10分)
又因為x≠-1,所以此時函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-1-
1+a
)
(-1+
1+a
,+∞)
,單調(diào)遞減區(qū)間為(-1-
1+a
,-1)
(-1,-1+
1+a
)

.….(12分)
所以,當(dāng)a≤-1時,函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-1)和(-1,+∞);
當(dāng)a>-1時,函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-1-
1+a
)
(-1+
1+a
,+∞)
,
單調(diào)遞減區(qū)間為(-1-
1+a
,-1)
(-1,-1+
1+a
)
..….(13分)
點評:此題考查學(xué)生會利用導(dǎo)數(shù)求曲線上過某點切線方程的斜率,會利用導(dǎo)函數(shù)的正負判斷函數(shù)的單調(diào)性,是一道中檔題.利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性的步驟是:(1)確定函數(shù)的定義域;(2)求導(dǎo)數(shù)fˊ(x);(3)在函數(shù)的定義域內(nèi)解不等式fˊ(x)>0和fˊ(x)<0;(4)確定函數(shù)的單調(diào)區(qū)間.若在函數(shù)式中含字母系數(shù),往往要分類討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-2m2+m+3(m∈Z)為偶函數(shù),且f(3)<f(5).
(1)求m的值,并確定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在實數(shù)a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,請求出a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省東陽中學(xué)高三10月階段性考試數(shù)學(xué)理科試題 題型:022

已知函數(shù)f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值,若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.已知函數(shù)f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數(shù)”,則k的值是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年河南省許昌市長葛三高高三第七次考試數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知函數(shù)f(x)、g(x),下列說法正確的是( )
A.f(x)是奇函數(shù),g(x)是奇函數(shù),則f(x)+g(x)是奇函數(shù)
B.f(x)是偶函數(shù),g(x)是偶函數(shù),則f(x)+g(x)是偶函數(shù)
C.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)一定是奇函數(shù)或偶函數(shù)
D.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)可以是奇函數(shù)或偶函數(shù)

查看答案和解析>>

同步練習(xí)冊答案