19.已知函數(shù)f(x)=Asin(ωx+φ)(ω>0,-π<φ<0)的部分圖象如圖所示,則下列判斷錯(cuò)誤的是( 。
A.函數(shù)f(x)的最小正周期為2
B.函數(shù)f(x)的值域?yàn)閇一4,4]
C.函數(shù)f(x)的圖象關(guān)于( $\frac{10}{3}$,0)對(duì)稱
D.函數(shù)f(x)的圖象向左平移 $\frac{π}{3}$個(gè)單位后得到y(tǒng)=Asinωx的圖象

分析 由周期求出ω,由特殊點(diǎn)的坐標(biāo)求出φ和A的值,可得函數(shù)y=Asin(ωx+φ)的解析式;再利用y=Asin(ωx+φ)圖象變換規(guī)律得出結(jié)論.

解答 解:根據(jù)函數(shù)f(x)=Asin(ωx+φ)(ω>0,-π<φ<0)的部分圖象,
可得T=2($\frac{4}{3}$-$\frac{1}{3}$)=2=$\frac{2π}{ω}$,∴ω=π.
∵f($\frac{1}{3}$)=Asin($\frac{1}{3}$π+φ)=0,-π<φ<0,可得φ=-$\frac{π}{3}$,函數(shù)f(x)=Asin(πx-$\frac{π}{3}$).
由f(0)=Asin(-$\frac{π}{3}$)=-$\frac{\sqrt{3}}{2}$A=-2$\sqrt{3}$,∴A=4,∴f(x)=4sin(πx-$\frac{π}{3}$).
故A、B、C正確,函數(shù)f(x)的圖象向左平移 $\frac{π}{3}$個(gè)單位后,不可能得到y(tǒng)=Asinωx的圖象,
故選:D.

點(diǎn)評(píng) 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由周期求出ω,由特殊點(diǎn)的坐標(biāo)求出φ和A的值.還考查了函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖1,在邊長為1的等邊三角形ABC中,M,N分別是AB,AC邊上的點(diǎn),AM=AN,D是BC的中點(diǎn),AD與MN交于點(diǎn)E,將△ABD沿AD折起,得到如圖2所示的三棱錐A-BCD,其中$BC=\frac{{\sqrt{2}}}{2}$.

(1)證明:CD⊥平面ABD;
(2)當(dāng)$AM=\frac{2}{3}$時(shí),求三棱錐E-MDN的體積VE-MDN

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知定義在[-2,2]上的函數(shù)y=f(x)和y=g(x),其圖象如圖所示:

則以下結(jié)論正確的個(gè)數(shù)是結(jié)論( 。
①方程f[g(x)]=0有且僅有6個(gè)根;   ②方程g[f(x)]=0有且僅有3個(gè)根;
③方程f[f(x)]=0有且僅有5個(gè)根;   ④方程g[g(x)]=0有且僅有4個(gè)根.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若函數(shù)$f(x)=\frac{1}{a}{x^2}-2ax+5$在區(qū)間(-∞,1)上單調(diào)遞增,在區(qū)間(1,+∞)上單調(diào)遞減,則a=( 。
A.1B.-1C.±1D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為C1D1,BC的中點(diǎn)
(1)求證EF∥平面BDD1B1;
(2)求異面直線EF與A1C1的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知雙曲線C:16x2-9y2=144,則C的離心率為( 。
A.$\frac{25}{16}$B.$\frac{5}{3}$C.$\frac{5}{4}$D.$\frac{25}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知M(-1,2)為橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{16}$=1內(nèi)一點(diǎn),直線l過點(diǎn)M,交橢圓于A,B兩點(diǎn),且M為弦AB的中點(diǎn),求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.解不等式:x2-x+a-a2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求過M(4,2)且與圓x2+y2-8x+6y=0相切的直線方程?

查看答案和解析>>

同步練習(xí)冊答案