分析 原不等式等價轉(zhuǎn)化為[x+(a-1)](x-a)<0,由a的取值范圍分類討論,由此能求出原不等式的解集.
解答 解:∵x2-x+a-a2<0,
∴x2-x-a(a-1)<0,
∴[x+(a-1)](x-a)<0
∴當-(a-1)>a時,即a<$\frac{1}{2}$時,
不等式:x2-x+a-a2<0的解集是{x|a<x<1-a};
當-(a-1)=a時,即a=$\frac{1}{2}$,
(x-$\frac{1}{2}$)2<0不存在,
不等式:x2-x+a-a2<0的解集是∅;
當-(a-1)<a時,即a>$\frac{1}{2}$時,
不等式:x2-x+a-a2<0的解集是{x|1-a<x<a}.
點評 本題考查含參一元二次不等式的解法,是中檔題,解題時要認真審題,注意分類討論思想的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$+$\frac{2}{5}$i | B. | $\frac{2}{5}$+$\frac{1}{5}$i | C. | -$\frac{1}{5}$-$\frac{2}{5}$i | D. | -$\frac{2}{5}$-$\frac{1}{5}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)f(x)的最小正周期為2 | |
B. | 函數(shù)f(x)的值域為[一4,4] | |
C. | 函數(shù)f(x)的圖象關(guān)于( $\frac{10}{3}$,0)對稱 | |
D. | 函數(shù)f(x)的圖象向左平移 $\frac{π}{3}$個單位后得到y(tǒng)=Asinωx的圖象 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{a}$=(2,3),$\overrightarrow$=(3,-2) | B. | $\overrightarrow{a}$=(2,3),$\overrightarrow$=(4,-6) | C. | $\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow$=($\sqrt{3}$,3) | D. | $\overrightarrow{a}$=(4,7),$\overrightarrow$=(7,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1-ln2 | B. | $\sqrt{2}$(1-ln2) | C. | 2(1+ln2) | D. | $\sqrt{2}$(1+ln2) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com