【題目】已知數(shù)列{an}滿足a1=1,a2n=n﹣an , a2n+1=an+1(n∈N*),則a1+a2+a3+…+a40等于(
A.222
B.223
C.224
D.225

【答案】C
【解析】解:∵a2n=n﹣an , a2n+1=an+1,
∴an=n﹣a2n , an=a2n+1﹣1,
∴a2n+1+a2n=n+1,
∴a1+(a2+a3)+(a4+a5)+…+(a38+a39
=1+2+3+…+20= ,
又a40=20﹣a20=20﹣(10﹣a10
=10+(5﹣a5)=15﹣(a2+1)
=14﹣a2=14﹣(1﹣a1)=14,
∴a1+a2+a3+…+a40=224.
故選:C.
【考點(diǎn)精析】掌握數(shù)列的通項(xiàng)公式是解答本題的根本,需要知道如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在 中, , , 分別為角 , , 所對(duì)的邊, 的面積,且
(I)求角 的大;
(II)若 , , 的中點(diǎn),且 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)f(x)=
(1)求實(shí)數(shù)m的值,并在給出的直角坐標(biāo)系中畫出y=f(x)的圖像.
(2)若函數(shù)f(x)在區(qū)間[﹣1,|a|﹣2]上單調(diào)遞增,試確定a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種商品價(jià)格與該商品日需求量之間的幾組對(duì)照數(shù)據(jù)如表:

價(jià)格x(元/kg)

10

15

20

25

30

日需求量y(kg)

11

10

8

6

5

參考公式:線性回歸方程 ,其中
(1)求y關(guān)于x的線性回歸方程;
(2)利用(1)中的回歸方程,當(dāng)價(jià)格x=40元/kg時(shí),日需求量y的預(yù)測(cè)值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l的方程為(2﹣m)x+(2m+1)y+3m+4=0,其中m∈R.
(1)求證:直線l恒過定點(diǎn);
(2)當(dāng)m變化時(shí),求點(diǎn)P(3,1)到直線l的距離的最大值;
(3)若直線l分別與x軸、y軸的負(fù)半軸交于A,B兩點(diǎn),求△AOB面積的最小值及此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足:對(duì)于任意n∈N*且n≥2時(shí),an+λan﹣1=2n+1,a1=4.
(1)若 ,求證:{an﹣3n}為等比數(shù)列;
(2)若λ=﹣1.①求數(shù)列{an}的通項(xiàng)公式; ②是否存在k∈N*,使得 +25為數(shù)列{an}中的項(xiàng)?若存在,求出所有滿足條件的k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式ax2+bx+3>0的解集為(﹣1,3).
(1)求實(shí)數(shù)a,b的值;
(2)解不等式x2+a|x﹣2|﹣8<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+8x+b(a,b為互不相等的正整數(shù)),方程f(x)=0的兩個(gè)實(shí)根為x1 , x2(x1≠x2),且|x1|<1,|x2|<1,若f(1)+f(﹣1)的最大值與最小值分別為M,m,則M+m的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖的程序框圖表示的算法中,輸入三個(gè)實(shí)數(shù)a,b,c,要求輸出的x是這三個(gè)數(shù)中最大的數(shù),那么在空白的判斷框中,應(yīng)該填入(

A.x>c
B.c>x
C.c>b
D.c>a

查看答案和解析>>

同步練習(xí)冊(cè)答案