【題目】在如圖的程序框圖表示的算法中,輸入三個(gè)實(shí)數(shù)a,b,c,要求輸出的x是這三個(gè)數(shù)中最大的數(shù),那么在空白的判斷框中,應(yīng)該填入( )
A.x>c
B.c>x
C.c>b
D.c>a
【答案】B
【解析】解:則流程圖可知a、b、c中的最大數(shù)用變量x表示并輸出,
第一個(gè)判斷框是判斷x與b的大小
∴第二個(gè)判斷框一定是判斷最大值x與c的大小,并將最大數(shù)賦給變量x
故第二個(gè)判斷框應(yīng)填入:c>x
故選B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用算法的條件結(jié)構(gòu)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握條件P是否成立而選擇執(zhí)行A框或B框.無(wú)論P(yáng)條件是否成立,只能執(zhí)行A框或B框之一,不可能同時(shí)執(zhí)行A框和B框,也不可能A框、B框都不執(zhí)行.一個(gè)判斷結(jié)構(gòu)可以有多個(gè)判斷框.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,a2n=n﹣an , a2n+1=an+1(n∈N*),則a1+a2+a3+…+a40等于( )
A.222
B.223
C.224
D.225
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an},{bn}分別滿足a1=1,|an+1﹣an|=2,且 |=2,其中n∈N* , 設(shè)數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn , Tn .
(1)若數(shù)列{an},{bn}都是遞增數(shù)列,求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若數(shù)列{cn}滿足:存在唯一的正整數(shù)k(k≥2),使得ck<ck﹣1 , 則稱數(shù)列{cn}為“k墜點(diǎn)數(shù)列”. ①若數(shù)列{an}為“5墜點(diǎn)數(shù)列”,求Sn;
②若數(shù)列{an}為“p墜點(diǎn)數(shù)列”,數(shù)列{bn}為“q墜點(diǎn)數(shù)列”,是否存在正整數(shù)m使得Sm+1=Tm?若存在,求出m的最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小學(xué)對(duì)五年級(jí)的學(xué)生進(jìn)行體質(zhì)測(cè)試,已測(cè)得五年級(jí)一班30名學(xué)生的跳遠(yuǎn)成績(jī)(單位:cm),用莖葉圖統(tǒng)計(jì)如圖,男生成績(jī)?cè)?75cm以上(包括175cm)定義為合格,成績(jī)?cè)?75cm以下(不含175cm)定義為“不合格”;女生成績(jī)?cè)?65以上(包括165cm)定義為“合格”,成績(jī)?cè)?65cm以下(不含165cm)定義為“不合格”.
(1)求男生跳遠(yuǎn)成績(jī)的中位數(shù).
(2)根據(jù)男女生的不同,用分層抽樣的方法從該班學(xué)生中抽取1個(gè)容量為5的樣本,求抽取的5人中女生的人數(shù).
(3)以此作為樣本,估計(jì)該校五年級(jí)學(xué)生體質(zhì)的合格率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C1:(x+2)2+(y﹣1)2=4與圓C2:(x﹣3)2+(y﹣4)2=4,過(guò)點(diǎn)P(﹣1,5)作兩條互相垂直的直線l1:y=k(x+1)+5,l2:y=﹣ (x+1)+5.
(1)若k=2時(shí),設(shè)l1與圓C1交于A、B兩點(diǎn),求經(jīng)過(guò)A、B兩點(diǎn)面積最小的圓的方程.
(2)若l1與圓C1相交,求證:l2與圓C2相交,且l1被圓C1截得的弦長(zhǎng)與l2被圓C2截得的弦長(zhǎng)相等.
(3)是否存在點(diǎn)Q,過(guò)Q的無(wú)數(shù)多對(duì)斜率之積為1的直線l3 , l4 , l3被圓C1截得的弦長(zhǎng)與l4被圓C2截得的弦長(zhǎng)相等.若存在求Q的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩點(diǎn)M(1, ),N(﹣4,﹣ ),給出下列曲線方程:
①4x+2y﹣1=0;
②x2+y2=3;
③ +y2=1;
④ ﹣y2=1.
在曲線上存在點(diǎn)P滿足|MP|=|NP|的所有曲線方程是( )
A.①③
B.②④
C.①②③
D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的一個(gè)頂點(diǎn)為A(0,﹣1),焦點(diǎn)在x軸上.若右焦點(diǎn)到直線x﹣y+2 =0的距離為3.
(1)求橢圓的方程;
(2)設(shè)橢圓與直線y=kx+m(k≠0)相交于不同的兩點(diǎn)M、N.當(dāng)|AM|=|AN|時(shí),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列結(jié)論正確的是( )
A.各個(gè)面都是三角形的幾何體是三棱錐
B.一平面截一棱錐得到一個(gè)棱錐和一個(gè)棱臺(tái)
C.棱錐的側(cè)棱長(zhǎng)與底面多邊形的邊長(zhǎng)相等,則該棱錐可能是正六棱錐
D.圓錐的頂點(diǎn)與底面圓周上的任意一點(diǎn)的連線都是母線
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)函數(shù) 在 上有兩個(gè)不同的零點(diǎn),求 的取值范圍;
(2)當(dāng) 時(shí), 的最大值為 ,求 的最小值;
(3)函數(shù) ,對(duì)于任意 存在 ,使得 ,試求 的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com