【題目】已知點是雙曲線的左右焦點,其漸近線為,且其右焦點與拋物線的焦點重合.

1)求雙曲線的方程;

2)過的直線相交于兩點,直線的法向量為,且,求的值

3)在(2)的條件下,若雙曲線在第四象限的部分存在一點滿足,求的值及的面積.

【答案】1;(2;(3;

【解析】

1)由焦點坐標和漸近線方程可構造關于的方程,解方程求得結果即可得到雙曲線方程;

2)由直線法向量可得到直線方程,與雙曲線方程聯(lián)立得到韋達定理的形式;利用可構造關于的方程,解方程求得結果;

3)由的值可得到韋達定理的形式,利用弦長公式求得;設,由已知等式可用表示出,代入雙曲線方程可求得,進而得到點坐標;利用點到直線距離公式求得的高,從而求得三角形的面積.

1)由題意知:拋物線的焦點為

,解得: 雙曲線的方程為:

2)由直線的法向量可得其方向向量

得:

,則

解得:

3)將代入式化簡得:,此時

,由得:

在雙曲線 ,解得:

位于第四象限

,又,即

到直線的距離

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務質量,收集并整理了月至月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)該折線圖,下列結論正確的是( )

A. 月接待游客逐月增加

B. 年接待游客量逐年減少

C. 各年的月接待游客量高峰期大致在

D. 各年月至月的月接待游客量相對于月至月,波動性較小,變化比較穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,圓經過伸縮變換后得到曲線以坐標原點為極點,軸的正半軸為極軸,并在兩種坐標系中取相同的單位長度,建立極坐標系,直線的極坐標方程為

(1)求曲線的直角坐標方程及直線的直角坐標方程;

(2)設點上一動點,求點到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 中,,分別為邊的中點,以為折痕把折起,使點到達點的位置,且

(1)證明:平面

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.在購進機器時,可以一次性額外購買幾次維修服務,每次維修服務費用200元,另外實際維修一次還需向維修人員支付小費,小費每次50元.在機器使用期間,如果維修次數(shù)超過購機時購買的維修服務次數(shù),則每維修一次需支付維修服務費用500元,無需支付小費.現(xiàn)需決策在購買機器時應同時一次性購買幾次維修服務,為此搜集并整理了100臺這種機器在三年使用期內的維修次數(shù),得下面統(tǒng)計表:

維修次數(shù)

8

9

10

11

12

頻數(shù)

10

20

30

30

10

x表示1臺機器在三年使用期內的維修次數(shù),y表示1臺機器在維修上所需的費用(單位:元),表示購機的同時購買的維修服務次數(shù).

(1)若=10,求yx的函數(shù)解析式;

(2)若要求“維修次數(shù)不大于的頻率不小于0.8,求n的最小值;

(3)假設這100臺機器在購機的同時每臺都購買10次維修服務,或每臺都購買11次維修服務,分別計算這100臺機器在維修上所需費用的平均數(shù),以此作為決策依據(jù),購買1臺機器的同時應購買10次還是11次維修服務?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個口袋內有個不同的紅球,個不同的白球,

(1)從中任取個球,紅球的個數(shù)不比白球少的取法有多少種?

(2)若取一個紅球記分,取一個白球記分,從中任取個球,使總分不少于分的取法有多少種?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列中,,當時,的前項和滿足

1)求的表達式;

2)設,數(shù)列的前項和為,求;

3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對比該?忌纳龑W情況,統(tǒng)計了該校2015年和2018年的高考情況,得到如圖柱狀圖:

則下列結論正確的是  

A. 與2015年相比,2018年一本達線人數(shù)減少

B. 與2015年相比,2018年二本達線人數(shù)增加了

C. 2015年與2018年藝體達線人數(shù)相同

D. 與2015年相比,2018年不上線的人數(shù)有所增加

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線上一點到焦點的距離,傾斜角為的直線經過焦點,且與拋物線交于兩點.

1)求拋物線的標準方程及準線方程;

2)若為銳角,作線段的中垂線軸于點.證明:為定值,并求出該定值.

查看答案和解析>>

同步練習冊答案