【題目】已知拋物線上一點到焦點的距離,傾斜角為的直線經(jīng)過焦點,且與拋物線交于兩點.

1)求拋物線的標準方程及準線方程;

2)若為銳角,作線段的中垂線軸于點.證明:為定值,并求出該定值.

【答案】1)拋物線的方程為,準線方程為

2為定值,證明見解析.

【解析】

1)利用拋物線的定義結(jié)合條件,可得出,于是可得出點的坐標,然后將點的坐標代入拋物線的方程求出的值,于此可得出拋物線的方程及其準線方程;

2)設(shè)直線的方程為,設(shè)點、,將直線的方程與拋物線的方程聯(lián)立,消去,列出韋達定理,計算出線段的中點的坐標,由此得出直線的方程,并得出點的坐標,計算出的表達式,可得出,然后利用二倍角公式可計算出為定值,進而證明題中結(jié)論成立.

1)由拋物線的定義知,.

將點代入,得,得.

拋物線的方程為,準線方程為;

2)設(shè)點,設(shè)直線的方程為,

,消去得:,則

,.

設(shè)直線中垂線的方程為:

,得:,則點,,.

為定值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點是雙曲線的左右焦點,其漸近線為,且其右焦點與拋物線的焦點重合.

1)求雙曲線的方程;

2)過的直線相交于兩點,直線的法向量為,且,求的值

3)在(2)的條件下,若雙曲線在第四象限的部分存在一點滿足,求的值及的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為迎接2022年北京冬奧會,推廣滑雪運動,某滑雪場開展滑雪促銷活動.該滑雪場的收費標準是:滑雪時間不超過1小時免費,超過1小時的部分每小時收費標準為40元(不足1小時的部分按1小時計算).有甲、乙兩人相互獨立地來該滑雪場運動,設(shè)甲、乙不超過1小時離開的概率分別為,;1小時以上且不超過2小時離開的概率分別為,;兩人滑雪時間都不會超過3小時.

(1)求甲、乙兩人所付滑雪費用相同的概率;

(2)設(shè)甲、乙兩人所付的滑雪費用之和為隨機變量ξ,求ξ的分布列與數(shù)學期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的值域為,記函數(shù).

1)求實數(shù)的值;

2)存在使得不等式成立,求實數(shù)的取值范圍;

3)若關(guān)于的方程5個不等的實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】唐三彩,中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術(shù)的特點,在中國文化中占有重要的歷史地位,在中國的陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產(chǎn)至今已有多年的歷史,對唐三彩的復(fù)制和仿制工藝,至今也有百余年的歷史.某陶瓷廠在生產(chǎn)過程中,對仿制的件工藝品測得重量(單位:)數(shù)據(jù)如下表:

分組

頻數(shù)

頻率

合計

(1)求出頻率分布表中實數(shù),的值;

(2)若從仿制的件工藝品重量范圍在的工藝品中隨機抽選件,求被抽選件工藝品重量均在范圍中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C,直線1過原點O

1)若直線l與圓C相切,求直線l的斜率;

2)若直線l與圓C交于AB兩點,點P的坐標為,若.求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列關(guān)于復(fù)數(shù)的四個命題中,正確的個數(shù)是( )

(1)若,則復(fù)數(shù)對應(yīng)的動點的軌跡是橢圓;

(2)若,則復(fù)數(shù)對應(yīng)的動點的軌跡是雙曲線;

(3)若,則復(fù)數(shù)對應(yīng)的動點的軌跡是拋物線;

(4)若,則的取值范圍是

A.4B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè),函數(shù)

(1)若無零點,求實數(shù)的取值范圍.

(2)若,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

(1)求函數(shù)的單調(diào)區(qū)間.

(2)若函數(shù)有兩個極值點,且,證明:.

查看答案和解析>>

同步練習冊答案