考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)根據(jù)函數(shù)
g′(x)==,可得當(dāng)x>e時(shí),g'(x)>0,進(jìn)而求出函數(shù)g(x)的單調(diào)遞增區(qū)間即可;
(2)因?yàn)閒(x)在(1,+∞)上為減函數(shù),故
f′(x)=-a≤0在(1,+∞)上恒成立,所以當(dāng)x∈(1,+∞)時(shí),f'(x)
max≤0,又因?yàn)?span id="ledclei" class="MathJye">f′(x)=
-a≤0,故當(dāng)
=,即x=e
2時(shí),求出f′(x)
max,進(jìn)而求出實(shí)數(shù)a的最小值即可;
(3)命題“若存在x
1,x
2∈[e,e
2],使f(x
1)≤f′(x
2)+a成立”等價(jià)于“當(dāng)x∈[e,e
2]時(shí),有f(x)
min≤f′(x)
max+a”,求出f′(x)
max+a=
,故問(wèn)題等價(jià)于:“當(dāng)x∈[e,e
2]時(shí),有f(x)
min≤
,然后分類討論,即可求出實(shí)數(shù)a的取值范圍.
解答:
解:(1)函數(shù)
g′(x)==,
當(dāng)x>e時(shí),g'(x)>0,
所以函數(shù)g(x)的單調(diào)增區(qū)間是(e,+∞);
(2)因?yàn)閒(x)在(1,+∞)上為減函數(shù),
故
f′(x)=-a≤0在(1,+∞)上恒成立,
所以當(dāng)x∈(1,+∞)時(shí),f'(x)
max≤0,
又因?yàn)楣?span id="5omv5en" class="MathJye">f′(x)=
-a≤0,
故當(dāng)
=,即x=e
2時(shí),f′(x)
max=
-a,
所以
-a≤0,于是a≥
,
故a的最小值為
;
(3)命題“若存在x
1,x
2∈[e,e
2],使f(x
1)≤f′(x
2)+a成立”等價(jià)于
“當(dāng)x∈[e,e
2]時(shí),有f(x)
min≤f′(x)
max+a”,
由(1)得,當(dāng)x∈[e,e
2]時(shí),f′(x)
max=
-a,
則f′(x)
max+a=
,
故問(wèn)題等價(jià)于:“當(dāng)x∈[e,e
2]時(shí),有f(x)
min≤
,
當(dāng)a
≥時(shí),f(x)在[e,e
2]上為減函數(shù),
則f(x)
min=f(e
2)=
-ae2≤
,
所以a≥
-
,
a≤0,f′(x)≥0在[e,e
2]恒成立,故f(x)在[e,e
2]上為增函數(shù),
于是,f(x)
min=f(e)=e-ae≥e>
,不合題意,
0<a<
時(shí),由f′(x)的單調(diào)性和值域知,存在唯一x
0∈(e,e
2),使f′(x
0)=0,
當(dāng)x∈(e,x
0)時(shí),f′(x)<0,f(x)為減函數(shù);
當(dāng)x∈(x
0,e
2)時(shí),f′(x)<0,f(x)為增函數(shù);
∴f(x)
min=f(x
0),
∴a≥
->
->
,與0<a<
矛盾,
綜上,a≥
-
.
點(diǎn)評(píng):本題主要考查了函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,以及求參數(shù)的范圍,屬于中檔題.