設(shè)max{f(x),g(x)}=,若函數(shù)n(x)=x2+px+q(p,q∈R)的圖象經(jīng)過不同的兩點(,0)、(,0),且存在整數(shù)n使得n<<<n+1成立,則(    )
A.max{n(n),n(n+1)}>1B.max{n(n),n(n+1)}<1
C.max{n(n),n(n+1)}>D.max{n(n),n(n+1)}>
B
n(x)=x2+px+q的圖象經(jīng)過兩點(α,0),(β,0),
n(x)=x2+px+q=(x-α)(x-β)
nn)=(n-α)(n-β)=(α-n)(β-n),nn+1)=(n+1-α)(n+1-β),
令α-n=t1,β-n=t2,由于n<α<β<n+1,則0<t1<1,0<t<1,且0<t1+t2<2,n(n+1)=(1-t1)(1-t2),
n(n)= t1t2,即n(n)<1;nn+1)=(1-t1)(1-t2),
,∴nn+1)<1,∴,
∴max{n(n),n(n+1)}<1,故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)f(x)滿足f(2)=-1,f(-1)=-1,且f(x)的最大值為8,求二次函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知
(1)設(shè),求的最大值與最小值;
(2)求的最大值與最小值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一次函數(shù)的圖象過點,則下列各點在函數(shù)的圖象上的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

有時可用函數(shù)f(x)=
0.1+15ln
a
a-x
x≤6
x-4.4
x-4
x>6
,描述學(xué)習(xí)某學(xué)科知識的掌握程度.其中x表示某學(xué)科知識的學(xué)習(xí)次數(shù)(x∈N*),f(x)表示對該學(xué)科知識的掌握程度,正實數(shù)a與學(xué)科知識有關(guān).
(1)證明:當(dāng)x≥7時,掌握程度的增長量f(x+1)-f(x)總是下降;
(2)根據(jù)經(jīng)驗,學(xué)科甲、乙、丙對應(yīng)的a的取值區(qū)間分別為(115,121],(121,127],(127,133].當(dāng)學(xué)習(xí)某學(xué)科知識6次時,掌握程度是85%,請確定相應(yīng)的學(xué)科.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)f(x)=x2-ax-a在區(qū)間[0,2]上的最大值為1,則實數(shù)a等于________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若二次函數(shù)滿足的取值范圍為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).設(shè) (max{p,q}表示p,q中的較大值,min{p,q}表示p,q中的較小值).記的最小值為A,的最大值為B,則(    )
A.16
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù),若互不相等的實數(shù)滿足,則的取值范圍是(     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案