【題目】已知命題P:4x﹣a2x+1≥0對(duì)x∈[﹣1,1]恒成立,命題Q:f(x)=log2(ax2﹣2x+ )的值域是R,若滿足P且Q為假,P或Q為真,求實(shí)數(shù)a的取值范圍.
【答案】解:∵命題P:4x﹣a2x+1≥0對(duì)x∈[﹣1,1]恒成立,
∴a≤2x+2﹣x , 對(duì)x∈[﹣1,1]恒成立,
∴a≤2,
∵命題Q:f(x)=log2(ax2﹣2x+ )的值域是R,
∴①a=0時(shí),f(x)=log2(﹣2x+ ),符合題意;
②a≠0時(shí),由題意,a>0且△≥0,
綜上,0≤a≤3,
∵P且Q為假,P或Q為真,∴P、Q一真一假,
①若P真,Q假,則a<0;
②若P假,Q真,則2<a≤3.
綜上,實(shí)數(shù)a的取值范圍為(﹣∞,0)∪(2,3]
【解析】先解命題,再研究命題的關(guān)系.若p且q為假,p或q為真,兩者是一真一假,計(jì)算可得答案.
【考點(diǎn)精析】利用復(fù)合命題的真假對(duì)題目進(jìn)行判斷即可得到答案,需要熟知“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時(shí)為真,其他情況時(shí)為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時(shí)為假,其他情況時(shí)為真.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={y|y=log2x,x≥4},B={y|y=( )x , ﹣1≤x≤0}.
(1)求A∩B;
(2)若集合C={x|a≤x≤2a﹣1},且C∪B=B,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)在單調(diào)遞增,其中.
(1)求的值;
(2)若,當(dāng)時(shí),試比較與的大小關(guān)系(其中是的導(dǎo)函數(shù)),請(qǐng)寫出詳細(xì)的推理過程;
(3)當(dāng)時(shí), 恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)求f(1),f[f(﹣2)]的值;
(2)若f(a)=10,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在空間直角坐標(biāo)系中,已知A(3,0,1)和B(1,0,-3),試問
(1)在y軸上是否存在點(diǎn)M,滿足 ?
(2)在y軸上是否存在點(diǎn)M,使△MAB為等邊三角形?若存在,試求出點(diǎn)M坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓 的圓心為原點(diǎn) ,且與直線 相切。
(1)求圓 的方程;
(2)過點(diǎn) (8,6)引圓O的兩條切線 ,切點(diǎn)為 ,求直線 的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐 中,底面為直角梯形, , ,平面底面ABCD,Q為AD的中點(diǎn),M是棱上的點(diǎn),
(Ⅰ)若是棱 的中點(diǎn),求證: ;
(Ⅱ)若二面角的大小為,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知cos = ,cos cos = ,cos cos cos = ,…,根據(jù)這些結(jié)果,猜想出的一般結(jié)論是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com