【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為為參數(shù),圓C的標(biāo)準(zhǔn)方程為以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.

求直線l和圓C的極坐標(biāo)方程;

若射線l的交點(diǎn)為M,與圓C的交點(diǎn)為AB,且點(diǎn)M恰好為線段AB的中點(diǎn),求a的值.

【答案】1)直線l的極坐標(biāo)方程為,圓C的極坐標(biāo)方程為;(2.

【解析】

直線l的參數(shù)方程消去t可得直線l的普通方程,將,代入,能求出直線l的極坐標(biāo)方程由圓的標(biāo)準(zhǔn)方程能求出圓C的極坐標(biāo)方程.

設(shè),,聯(lián)立,

,從而,進(jìn)而代入,求出a的值即可.

解:直線l的參數(shù)方程為為參數(shù)

在直線l的參數(shù)方程中消去t可得直線l的普通方程為,

代入以上方程中,

得到直線l的極坐標(biāo)方程為

C的標(biāo)準(zhǔn)方程為,

C的極坐標(biāo)方程為

在極坐標(biāo)系中,由已知可設(shè),

聯(lián)立,得

點(diǎn)M恰好為AB的中點(diǎn),

,即

代入,

,

解得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線

(1)求曲線在點(diǎn)處的切線方程;

(2)求曲線過(guò)點(diǎn)的切線方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班從4位男生和3位女生志愿者選出4人參加校運(yùn)會(huì)的點(diǎn)名簽到工作,則選出的志愿者中既有男生又有女生的概率的是__________.(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次不等式ax2+x+b>0的解集為(-∞,-2)∪(1,+∞).

(Ⅰ)求ab的值;

(Ⅱ)求不等式ax2-(c+bx+bc<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐PABCD中,ADBC,平面PAC⊥平面ABCDAB=AD=DC=1,

ABC=DCB=60EPC上一點(diǎn).

Ⅰ)證明:平面EAB⊥平面PAC;

Ⅱ)若△PAC是正三角形EPC中點(diǎn),求三棱錐AEBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知甲、乙、丙三位同學(xué)在某次考試中總成績(jī)列前三名,有,三位學(xué)生對(duì)其排名猜測(cè)如下::甲第一名,乙第二名;:丙第一名;甲第二名;:乙第一名,甲第三名.成績(jī)公布后得知,,,三人都恰好猜對(duì)了一半,則第一名是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線的焦點(diǎn)為F,圓,點(diǎn)為拋物線上一動(dòng)點(diǎn).已知當(dāng)的面積為.

(I)求拋物線方程;

(II)若,過(guò)P做圓C的兩條切線分別交y軸于M,N兩點(diǎn),求面積的最小值,并求出此時(shí)P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從甲、乙兩種樹(shù)苗中各抽測(cè)了10株樹(shù)苗的高度,其莖葉圖如圖.根據(jù)莖葉圖,下列描述正確的是(

A.甲種樹(shù)苗的平均高度大于乙種樹(shù)苗的平均高度,且甲種樹(shù)苗比乙種樹(shù)苗長(zhǎng)得整齊

B.甲種樹(shù)苗的平均高度大于乙種樹(shù)苗的平均高度,但乙種樹(shù)苗比甲種樹(shù)苗長(zhǎng)得整齊

C.乙種樹(shù)苗的平均高度大于甲種樹(shù)苗的平均高度,且乙種樹(shù)苗比甲種樹(shù)苗長(zhǎng)得整齊

D.乙種樹(shù)苗的平均高度大于甲種樹(shù)苗的平均高度,但甲種樹(shù)苗比乙種樹(shù)苗長(zhǎng)得整齊

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C (a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為.直線yk(x-1)與橢圓C交于不同的兩點(diǎn)M,N.

(1)求橢圓C的方程;

(2)當(dāng)△AMN的面積為時(shí),求k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案