在△ABC中,已知數(shù)學(xué)公式,sinB=cosA•sinC,S△ABC=6,P為線段AB上的點(diǎn),且數(shù)學(xué)公式,則xy的最大值為________.

3
分析:由條件求得bccosA=9,bcsinA=6,tanA=,可得c=5,b=3,a=4,以AC所在的直線為x軸,以BC所在的直線為y軸建立直角坐標(biāo)系可得C(0,0),A(3,0),B(0,4).設(shè) =,=,則=(x,y),可得x=3λ,y=4-4λ則4x+3y=12,利用基本不等式求解最大值.
解答:△ABC中,設(shè)AB=c,BC=a,AC=b,∵sinB=cosA•sinC,sin(A+C)=sinCcosnA,
即sinAcosC+sinCcosA=sinCcosA.
∴sinAcosC=0,∵sinA≠0,∴cosC=0,C=90°.
=9,S△ABC=6,∴bccosA=9,bcsinA=6,∴tanA=
根據(jù)直角三角形可得sinA=,cosA=,bc=15,∴c=5,b=3,a=4.
以AC所在的直線為x軸,以BC所在的直線為y軸建立直角坐標(biāo)系可得C(0,0),A(3,0),B(0,4).
P為線段AB上的一點(diǎn),則存在實(shí)數(shù)λ使得+(1-λ)=(3λ,4-4λ)(0≤λ≤1).
設(shè) =,=,則||=||=1,且 =(1,0),=(0,1).
=(x,0)+(0,y)=(x,y),可得x=3λ,y=4-4λ則4x+3y=12,
12=4x+3y≥2,解得xy≤3,
故所求的xy最大值為:3.
故答案為 3.
點(diǎn)評(píng):本題是一道構(gòu)思非常巧妙的試題,綜合考查了三角形的內(nèi)角和定理、兩角和的正弦公式及基本不等式求解最值問題,解題的關(guān)鍵是理解把已知所給的是一個(gè)單位向量,從而可用x,y表示,建立x,y與λ的關(guān)系,解決本題的第二個(gè)關(guān)鍵點(diǎn)在于由x=3λ,y=4-4λ發(fā)現(xiàn)4x+3y=12為定值,從而考慮利用基本不等式求解最大值,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知A=30°,B=120°,b=12,求a,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知b=
2
,c=1,B=45°,求a,A,C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知高AN和BM所在直線方程分別為x+5y-3=0和x+y-1=0,邊AB所在直線方程x+3y-1=0,求直線BC,CA及AB邊上的高所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知lgsinA-lgcosB-lgsinC=lg2,則三角形一定是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知b=1,c=3,A=120°,則a=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案