精英家教網 > 高中數學 > 題目詳情

【題目】已知M是正四面體ABCD棱AB的中點,N是棱CD上異于端點C,D的任一點,則下列結論中,正確的個數有(  )

1MN⊥AB;

(2)若N為中點,則MN與AD所成角為60°;

(3)平面CDM平面ABN;

(4)不存在點N,使得過MN的平面與AC垂直.

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】逐一考查所給的四個說法:

(1)連結MC,MD,由三角形三線合一可得ABCM,ABDMAB⊥平面MCD,

MN平面MCD,ABMN,(1)正確;

(2)BD中點E,連結ME,NE,則∠NME或其補角為MNAD所成角,

連結BN,(1)BMMN,設正四面體棱長為1,

,cosNME=,∴∠NME=45°,(2)不正確;

(3)(1)AB⊥平面CDM,AB平面ABN,∴平面CDM⊥平面ABN,(3)正確;

(4)BC中點F,連結MFDF,假設存在點N,使得過MN的平面與AC垂直,

ACMN,MFAC,MFMN

DF=DM=,∴∠FMD<90°,很明顯∠CMF<90°.

NDC移動時,FMN先減小,后增大,故∠FMN<90°,與MFMN矛盾.

∴不存在點N,使得過MN的平面與AC垂直,(4)正確.

本題選擇C選項.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xoy中,曲線C1的參數方程為 (α為參數),曲線C2的參數方程為 (β為參數),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.
(1)求曲線C1和曲線C2的極坐標方程;
(2)已知射線l1:θ=α( <α< ),將射線l1順時針方向旋轉 得到l2:θ=α﹣ ,且射線l1與曲線C1交于兩點,射線l2與曲線C2交于O,Q兩點,求|OP||OQ|的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數多少之間的關系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數,得到如表資料:

日 期

1月10日

2月10日

3月10日

4月10日

5月10日

6月10日

晝夜溫差x(°C)

10

11

13

12

8

6

就診人數y(個)

22

25

29

26

16

12

該興趣小組確定的研究方案是:先從這六組數據中選取2組,用剩下的4組數據求線性回歸方程,再用被選取的2組數據進行檢驗.

(1)求選取的2組數據恰好是相鄰兩個月的概率;

(2)若選取的是1月與6月的兩組數據,請根據2至5月份的數據,求出關于的線性回歸方程

(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否理想?

參考公式:,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知長方形 , .以的中點為原點建立如圖所示的平面直角坐標系.

(1)求以為焦點,且過兩點的橢圓的標準方程;

(2)過點的直線交(1)中橢圓于、兩點,是否存在直線,使得弦為直徑的圓恰好過原點?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知α,β是兩個不同的平面,m,n分別是平面α與平面β之外的兩條不同直線,給出四個論斷:

①m⊥n;②α⊥β;③n⊥β;④m⊥α.

以其中三個論斷作為條件,余下一個論斷作為結論,寫出你認為正確的一個命題:____.(用序號表示)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1的棱長為a,若E為棱AB的中點,

求四棱錐B1﹣BCDE的體積

求證:面B1DC⊥面B1DE

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知命題p:曲線C:(m+2x2+my2=1表示雙曲線,命題q:方程y2=m2﹣1x表示的曲線是焦點在x軸的負半軸上的拋物線,若p∨q為真命題,p∧q為假命題,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=1,點E,F分別為AB和PD中點。

(1)求直線AF與EC所成角的正弦值;

(2)求PE與平面PDB所成角的正弦值。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數,當橋上的車流密度達到200/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20/千米時,車流速度為60千米/小時,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數.

1)當0≤x≤200時,求函數vx)的表達式;

2)當車流密度x為多大時,車流量(單位時間內通過橋上某觀測點的車輛數,單位:輛/小時)fx=xvx)可以達到最大,并求出最大值.(精確到1/小時).

查看答案和解析>>

同步練習冊答案