(本題滿分12分)如圖所示,在棱長為4的正方體ABCD—A1B1C1D1中,點E是棱CC1的中點。
(I)求三棱錐D1—ACE的體積;
(II)求異面直線D1E與AC所成角的余弦值;
(III)求二面角A—D1E—C的正弦值。
(I);(II)(III)
解析試題分析:(I) …………3分
(II)取DD1的中點F,連結FC,則D1E//FC,
∴∠FCA即為異面直線D1E與AC
所成角或其補角。 …………5分
∴異面直線D1E與AC所成角的余弦值為…………7分
(III)過點D作DG⊥D1E于點G,連接AG,由AD⊥面D1DCC1,
∴AD⊥D1E
又∵DG⊥D1E,∴D1E⊥面ADG
∴D1E⊥AG,則∠AGD為二面角A—D1E—C的平面角 ……9分
∵D1E·DG=DD1·CD,
,
二面角A—D1E—C的正弦值為…………12分
法二:(I)同法一 ………………3分
(II)以D為原點,分別以DA,DC,DD1為ox,oy,oz軸建立空間直角坐標系。
(III)顯然是平面D1DCE的法向量,
設平面D1AE的一個法向量為
二面角A—D1E—C的正弦值為…………12分
考點:棱錐的體積公式;異面直線所成的角;二面角。
點評:求異面直線所成的角,解題的關鍵是:首先正確的建立空間直角坐標系,然后可將異面直線所成的角轉化為所對應的向量的夾角或其補角;而對于利用向量法求線面角關鍵是正確求解平面的一個法向量。注意計算要仔細、認真。
科目:高中數(shù)學 來源: 題型:解答題
(本題12分)如圖,平面,點在上,∥,四邊形為直角梯形,,,
(1)求證:平面;
(2)求二面角的余弦值;
(3)直線上是否存在點,使∥平面,若存在,求出點;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)
如圖所示,在矩形中,的中點,F(xiàn)為BC的中點,O為AE的中點,以AE為折痕將△ADE向上折起,使D到P點位置,且.
(1)求證:
(2)求二面角E-AP-B的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)如圖,已知在四棱錐中,底面是矩形,平面,,,是的中點, 是線段上的點.
(I)當是的中點時,求證:平面;
(II)要使二面角的大小為,試確定點的位置.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
如圖,在四棱錐S - ABCD中,底面ABCD是直角梯形,側棱SA⊥底面ABCD,AB垂直于AD和BC,SA ="AB=BC" =2,AD =1.M是棱SB的中點.
(Ⅰ)求證:AM∥面SCD;
(Ⅱ)求面SCD與面SAB所成二面角的余弦值;
(Ⅲ)設點N是直線CD上的動點,MN與面SAB所成的角為,求sin的最大值,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)右圖是一個直三棱柱(以為底面)被一平面所截得到的幾何體,截面為 已知,,,,
(Ⅰ)設點是的中點,證明:平面;
(Ⅱ)求二面角的大;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com