【題目】已知雙曲線 的左、右焦點(diǎn)分別為F1、F2 , P為C的右支上一點(diǎn),且|PF2|=|F1F2|,則 等于(
A.24
B.48
C.50
D.56

【答案】C
【解析】解:根據(jù)雙曲線方程 ,
得a2=4,b2=5,c= =3,所以雙曲線的焦點(diǎn)分別為F1(﹣3,0)、F2(3,0),
設(shè)點(diǎn)P的坐標(biāo)為(m,n),其中m>2,則
∵點(diǎn)P在雙曲線上,且|PF2|=|F1F2|,
,解之得m= ,n=±
=(﹣3﹣m,﹣n), =(3﹣m,﹣n)
=(﹣3﹣m)(3﹣m)+(﹣n)(﹣n)=m2﹣9+n2= ﹣9+ =50
故選C
設(shè)點(diǎn)P的坐標(biāo)為(m,n),其中m>2,根據(jù)點(diǎn)P在雙曲線上且|PF2|=|F1F2|,建立關(guān)于m、n的方程組,解之得m、n的值,從而得到向量 的坐標(biāo),利用向量數(shù)量積的坐標(biāo)公式,可算出 的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)命題中,正確的是( )
A.奇函數(shù)的圖象一定過(guò)原點(diǎn)
B.y=x2+1(﹣4<x≤4)是偶函數(shù)
C.y=|x+1|﹣|x﹣1|是奇函數(shù)
D.y=x+1是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列判斷中正確的是( )
A. 是偶函數(shù)
B. 是奇函數(shù)
C. 是偶函數(shù)
D. 是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C:y2=x,過(guò)點(diǎn)M(2,0)作直線l:x=ny+2與拋物線C交于A,B兩點(diǎn),點(diǎn)N是定直線x=﹣2上的任意一點(diǎn),分別記直線AN,MN,BN的斜率為k1 , k2 , k3
(1)求 的值;
(2)試探求k1 , k2 , k3之間的關(guān)系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)正有理數(shù)a1 的一個(gè)近似值,令a2=1+ ,求證:
(1) 介于a1與a2之間;
(2)a2比a1更接近于

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為 ,且過(guò)點(diǎn)D(2,0).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn) ,若P是橢圓上的動(dòng)點(diǎn),求線段PA的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】A={x|x2﹣x﹣2=0},B={x|ax﹣1=0},若A∩B=B,則a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若正數(shù)x,y滿足x+3y=5xy,求:
(1)3x+4y的最小值;
(2)求xy的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)F1 , F2分別為橢圓 +y2=1的焦點(diǎn),點(diǎn)A,B在橢圓上,若 =5 ;則點(diǎn)A的坐標(biāo)是

查看答案和解析>>

同步練習(xí)冊(cè)答案