【題目】已知橢圓E:()的焦點(diǎn)為,以原點(diǎn)O為圓心,橢圓E的短半軸長(zhǎng)為半徑的圓與直線相切.
(1)求橢圓E的方程;
(2)過(guò)點(diǎn)F的直線l交橢圓E于M,N兩點(diǎn),點(diǎn)P的坐標(biāo)為,直線與x軸交于A點(diǎn),直線與x軸交于B點(diǎn),求證:.
【答案】(1);(2)見(jiàn)解析.
【解析】
(1)根據(jù)直線與圓相切列出對(duì)應(yīng)方程,再結(jié)合橢圓的基本知識(shí)計(jì)算求解即可;
(2)先討論l與y軸重合時(shí)的情況,再在l與y軸不重合的情況下,設(shè),,l的方程為,將之與橢圓方程聯(lián)立,得到韋達(dá)定理.解法一:利用韋達(dá)定理化簡(jiǎn)證明,從而證明出;解法二:設(shè),,:,:,然后根據(jù)方程求出,再結(jié)合韋達(dá)定理證明,從而證明出.
(1)由已知得,,因此,
所以橢圓E的方程為.
(2)解法一:
①當(dāng)l與y軸重合時(shí),由題意知.
②當(dāng)l與y軸不重合時(shí),設(shè)l的方程為,,,則,,
直線,的斜率之和為,
由,得,
將代入,得,
,
所以,,
所以,
從而,故,的傾斜角互補(bǔ),
所以,因此.
綜上所述,.
解法二:
①當(dāng)l與y軸重合時(shí),由題意知.
②當(dāng)l與y軸不重合時(shí),設(shè)l的方程為,,,則,,
將代入得.
,
所以,.
設(shè):,:,,
易知,,
在中,令得,
在中,令得,
于是,
由,得
,
由于,因此,
所以點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)O對(duì)稱(chēng),
而點(diǎn)P在y軸上,因此.
綜上所述,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是定義域?yàn)?/span>的偶函數(shù),對(duì),有,且當(dāng)時(shí),,函數(shù).現(xiàn)給出以下命題:①是周期函數(shù);②的圖象關(guān)于直線對(duì)稱(chēng);③當(dāng)時(shí),在內(nèi)有一個(gè)零點(diǎn);④當(dāng)時(shí),在上至少有六個(gè)零.其中正確命題的序號(hào)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】按照水果市場(chǎng)的需要等因素,水果種植戶把某種成熟后的水果按其直徑的大小分為不同等級(jí).某商家計(jì)劃從該種植戶那里購(gòu)進(jìn)一批這種水果銷(xiāo)售.為了了解這種水果的質(zhì)量等級(jí)情況,現(xiàn)隨機(jī)抽取了100個(gè)這種水果,統(tǒng)計(jì)得到如下直徑分布表(單位:mm):
d | |||||
等級(jí) | 三級(jí)品 | 二級(jí)品 | 一級(jí)品 | 特級(jí)品 | 特級(jí)品 |
頻數(shù) | 1 | m | 29 | n | 7 |
用分層抽樣的方法從其中的一級(jí)品和特級(jí)品共抽取6個(gè),其中一級(jí)品2個(gè).
(1)估計(jì)這批水果中特級(jí)品的比例;
(2)已知樣本中這批水果不按等級(jí)混裝的話20個(gè)約1斤,該種植戶有20000斤這種水果待售,商家提出兩種收購(gòu)方案:
方案A:以6.5元/斤收購(gòu);
方案B:以級(jí)別分裝收購(gòu),每袋20個(gè),特級(jí)品8元/袋,一級(jí)品5元/袋,二級(jí)品4元/袋,三級(jí)品3元/袋.
用樣本的頻率分布估計(jì)總體分布,問(wèn)哪個(gè)方案種植戶的收益更高?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年情況特殊,小王在居家自我隔離時(shí)對(duì)周邊的水產(chǎn)養(yǎng)殖產(chǎn)業(yè)進(jìn)行了研究.、兩個(gè)投資項(xiàng)目的利潤(rùn)率分別為投資變量和.根據(jù)市場(chǎng)分析,和的分布列分別為:
5% | 10% | |||
0.8 | 0.2 | |||
2% | 8% | 12% | ||
0.2 | 0.5 | 0.3 | ||
(1)若在兩個(gè)項(xiàng)目上各投資萬(wàn)元,和分別表示投資項(xiàng)目和所獲得的利潤(rùn),求方差,;
(2)若在兩個(gè)項(xiàng)目上共投資萬(wàn)元,那么如何分配,能使投資項(xiàng)目所得利潤(rùn)的方差與投資項(xiàng)目所得利潤(rùn)的方差的和最小,最小值是多少?
(注:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年12月18日上午10時(shí),在人民大會(huì)堂舉行了慶祝改革開(kāi)放40周年大會(huì).40年眾志成城,40年砥礪奮進(jìn),40年春風(fēng)化雨,中國(guó)人民用雙手書(shū)寫(xiě)了國(guó)家和民族發(fā)展的壯麗史詩(shī).會(huì)后,央視媒體平臺(tái),收到了來(lái)自全國(guó)各地的紀(jì)念改革開(kāi)放40年變化的老照片,并從眾多照片中抽取了100張照片參加“改革開(kāi)放40年圖片展”,其作者年齡集中在之間,根據(jù)統(tǒng)計(jì)結(jié)果,做出頻率分布直方圖如下:
(Ⅰ)求這100位作者年齡的樣本平均數(shù)和樣本方差(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);
(Ⅱ)由頻率分布直方圖可以認(rèn)為,作者年齡X服從正態(tài)分布,其中近似為樣本平
均數(shù),近似為樣本方差.
(i)利用該正態(tài)分布,求;
(ii)央視媒體平臺(tái)從年齡在和的作者中,按照分層抽樣的方法,抽出了7人參加“紀(jì)念改革開(kāi)放40年圖片展”表彰大會(huì),現(xiàn)要從中選出3人作為代表發(fā)言,設(shè)這3位發(fā)言者的年齡落在區(qū)間的人數(shù)是Y,求變量Y的分布列和數(shù)學(xué)期望.附:,若,則,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)從下面三個(gè)條件中任選一個(gè),補(bǔ)充在下面的橫線上,并解答.
①
②
③的面積為
在中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知b-c=2,cosA=, .
(1)求a;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】采購(gòu)經(jīng)理指數(shù)(PMI)是衡量一個(gè)國(guó)家制造業(yè)的“體檢表”,是衡量制造業(yè)在生產(chǎn)新訂單、商品價(jià)格、存貨、雇員、訂單交貨、新出口訂單和進(jìn)口等八個(gè)方面狀況的指數(shù),下圖為2018年9月—2019年9月我國(guó)制造業(yè)的采購(gòu)經(jīng)理指數(shù)(單位:%).
(1)求2019年前9個(gè)月我國(guó)制造業(yè)的采購(gòu)經(jīng)理指數(shù)的中位數(shù)及平均數(shù)(精確到0.1);
(2)從2019年4月—2019年9月這6個(gè)月任意選取2個(gè)月,求這兩個(gè)月至少有一個(gè)月采購(gòu)經(jīng)理指數(shù)與上個(gè)月相比有所回升的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com