4.如圖,四棱錐S-ABCD中,底面ABCD為平行四邊形,E是SA的上一點,當點E滿足條件SE=EA,時,SC∥平面EBD,寫出條件并加以證明.

分析 欲證SC∥平面EBD,根據(jù)直線與平面平行的判定定理可知只需證SC與平面EBD內(nèi)一直線平行,取SA的中點E,連接EB,ED,AC,設AC與BD的交點為O,連接EO.根據(jù)中位線可知OE∥SC,而SC?平面EBD,OE?平面EBD,滿足定理所需條件.

解答 答:點E的位置是棱SA的中點.
證明:取SA的中點E,連接EB,ED,AC,
設AC與BD的交點為O,連接EO.
∵四邊形ABCD是平行四邊形,
∴點O是AC的中點.
又E是SA的中點,∴OE是△SAC的中位線.
∴OE∥SC.
∵SC?平面EBD,OE?平面EBD,
∴SC∥平面EBD.
故答案為SE=EA.

點評 本題主要考查了直線與平面平行的判定,應熟練記憶直線與平面平行的判定定理,屬于探索性問題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.設函數(shù)$f(x)=sin(2x+\frac{π}{3})+\sqrt{3}-2\sqrt{3}{cos^2}$x.
(1)求f(x)的最小正周期及其圖象的對稱中心;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.函數(shù)f(x)=lg($\frac{2}{1-x}$+a)是奇函數(shù),則a的值為( 。
A.0B.1C.-1D.不存在

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.對于實數(shù)x,將滿足“0≤y<1且x-y為整數(shù)”的實數(shù)y稱為實數(shù)x的小數(shù)部分,用符號?x>表示.對于實數(shù)a,無窮數(shù)列{an}滿足如下條件:
①a1=?a>; ②an+1=$\left\{\begin{array}{l}{<\frac{1}{{a}_{n}}>({a}_{n}≠0)}\\{0({a}_{n}=0)}\end{array}\right.$.
(Ⅰ)若a=$\sqrt{2}$時,數(shù)列{an}通項公式為an=$\sqrt{2}$-1;
(Ⅱ)當a>$\frac{1}{2}$時,對任意n∈N*都有an=a,則a的值為$\frac{\sqrt{5}-1}{2}$ 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.如圖程序框圖的算法思路,源于我國南宋時期的數(shù)學家秦九韶在他的著作《數(shù)書九章》中提出的秦九韶算法,執(zhí)行該程序框圖,若輸入的n,an,x分別為5,1,-2,且a4=5,a3=10,a2=10,a1=5,a0=1,則輸出的v=(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.函數(shù)f(x)=lnx的圖象在點(1,0)處的切線方程是x-y-1=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知sinα•cosα=$\frac{1}{8}$,且0<α<$\frac{π}{4}$,則sinα-cosα=( 。
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{3}{4}$D.-17

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.設函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{4}{x}+1,x≥4}\\{lo{g}_{2}x,0<x<4}\end{array}\right.$若f(a)=f(b)=c,f′(b)<0,則a,b,c的大小關系是b>a>c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-4,x≤0}\\{{e}^{x}-5,x>0}\end{array}\right.$若關于x的方程|f(x)|-ax-5=0恰有三個不同的實數(shù)解,則滿足條件的所有實數(shù)a的取值集合為{-e,-$\frac{5}{ln5}$,2,$\frac{5}{2}$}.

查看答案和解析>>

同步練習冊答案